Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
CMP
Credit: Jack Hobhouse

Robin Nicholas

Emeriti

Sub department

  • Condensed Matter Physics
Robin.Nicholas@physics.ox.ac.uk
Telephone: 01865 (2)72250
Clarendon Laboratory, room 148
  • About
  • Publications

Carbon Nanotube/Polymer Composites as a Highly Stable Hole Collection Layer in Perovskite Solar Cells

Nano Letters American Chemical Society (ACS) 14:10 (2014) 5561-5568

Authors:

Severin N Habisreutinger, Tomas Leijtens, Giles E Eperon, Samuel D Stranks, Robin J Nicholas, Henry J Snaith
More details from the publisher
More details
More details

Hyperspectral Imaging of Exciton Photoluminescence in Individual Carbon Nanotubes Controlled by High Magnetic Fields

Nano Letters American Chemical Society (ACS) 14:9 (2014) 5194-5200

Authors:

Jack A Alexander-Webber, Clement Faugeras, Piotr Kossacki, Marek Potemski, Xu Wang, Hee Dae Kim, Samuel D Stranks, Robert A Taylor, Robin J Nicholas
More details from the publisher
More details
More details

Breakdown of the quantum Hall effect in epitaxial graphene

Institute of Electrical and Electronics Engineers (IEEE) (2014) 40-41

Authors:

TJBM Janssen, S Rozhko, A Tzalenchuk, JA Alexander-Webber, RJ Nicholas
More details from the publisher

Low-temperature processed electron collection layers of graphene/TiO2 nanocomposites in thin film perovskite solar cells.

Nano Lett 14:2 (2014) 724-730

Authors:

Jacob Tse-Wei Wang, James M Ball, Eva M Barea, Antonio Abate, Jack A Alexander-Webber, Jian Huang, Michael Saliba, Iván Mora-Sero, Juan Bisquert, Henry J Snaith, Robin J Nicholas

Abstract:

The highest efficiencies in solution-processable perovskite-based solar cells have been achieved using an electron collection layer that requires sintering at 500 °C. This is unfavorable for low-cost production, applications on plastic substrates, and multijunction device architectures. Here we report a low-cost, solution-based deposition procedure utilizing nanocomposites of graphene and TiO2 nanoparticles as the electron collection layers in meso-superstructured perovskite solar cells. The graphene nanoflakes provide superior charge-collection in the nanocomposites, enabling the entire device to be fabricated at temperatures no higher than 150 °C. These solar cells show remarkable photovoltaic performance with a power conversion efficiency up to 15.6%. This work demonstrates that graphene/metal oxide nanocomposites have the potential to contribute significantly toward the development of low-cost solar cells.
More details from the publisher
More details

An ultrafast carbon nanotube terahertz polarisation modulator

Journal of Applied Physics American Institute of Physics 115:20 (2014) 203108-203108

Authors:

Callum J Docherty, Sam Stranks, Severin N Habisreutinger, Hannah Joyce, Laura Herz, Robin Nicholas, Michael Johnston

Abstract:

We demonstrate ultrafast modulation of terahertz radiation by unaligned optically pumped single-walled carbon nanotubes. Photoexcitation by an ultrafast optical pump pulse induces transient terahertz absorption in nanowires aligned parallel to the optical pump. By controlling the polarisation of the optical pump, we show that terahertz polarisation and modulation can be tuned, allowing sub-picosecond modulation of terahertz radiation. Such speeds suggest potential for semiconductor nanowire devices in terahertz communication technologies.
More details from the publisher
Details from ORA
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 6
  • Page 7
  • Page 8
  • Page 9
  • Current page 10
  • Page 11
  • Page 12
  • Page 13
  • Page 14
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet