Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Volcano with sunset in background, over ocean.

Harrison Nicholls (he/him)

Graduate student

Research theme

  • Astronomy and astrophysics

Sub department

  • Atmospheric, Oceanic and Planetary Physics

Research groups

  • Planetary Climate Dynamics
harrison.nicholls@physics.ox.ac.uk
Atmospheric Physics Clarendon Laboratory, room 113
nichollsh.github.io
  • About
  • Publications

Impact of varying redox states on crystallization and atmospheric composition of rocky exoplanets.

Copernicus Publications (2025)

Authors:

Mariana Sastre, Tim Lichtenberg, Dan Bower, Harrison Nicholls, Inga Kamp
More details from the publisher

Reliable Detections of Atmospheres on Rocky Exoplanets with Photometric JWST Phase Curves

The Astrophysical Journal Letters American Astronomical Society 978:2 (2025) l40

Authors:

Mark Hammond, Claire Marie Guimond, Tim Lichtenberg, Harrison Nicholls, Chloe Fisher, Rafael Luque, Tobias G Meier, Jake Taylor, Quentin Changeat, Lisa Dang, Hamish CFC Hay, Oliver Herbort, Johanna Teske
More details from the publisher
More details

Convective shutdown in the atmospheres of lava worlds

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 536:3 (2024) 2957-2971

Authors:

Harrison Nicholls, Raymond T Pierrehumbert, Tim Lichtenberg, Laurent Soucasse, Stef Smeets
More details from the publisher
More details

Convective shutdown in the atmospheres of lava worlds

(2024)

Authors:

Harrison Nicholls, Raymond T Pierrehumbert, Tim Lichtenberg, Laurent Soucasse, Stef Smeets
Details from ArXiV

Magma Ocean Evolution at Arbitrary Redox State.

Journal of geophysical research. Planets 129:12 (2024) e2024JE008576

Authors:

Harrison Nicholls, Tim Lichtenberg, Dan J Bower, Raymond Pierrehumbert

Abstract:

Interactions between magma oceans and overlying atmospheres on young rocky planets leads to an evolving feedback of outgassing, greenhouse forcing, and mantle melt fraction. Previous studies have predominantly focused on the solidification of oxidized Earth-similar planets, but the diversity in mean density and irradiation observed in the low-mass exoplanet census motivate exploration of strongly varying geochemical scenarios. We aim to explore how variable redox properties alter the duration of magma ocean solidification, the equilibrium thermodynamic state, melt fraction of the mantle, and atmospheric composition. We develop a 1D coupled interior-atmosphere model that can simulate the time-evolution of lava planets. This is applied across a grid of fixed redox states, orbital separations, hydrogen endowments, and C/H ratios around a Sun-like star. The composition of these atmospheres is highly variable before and during solidification. The evolutionary path of an Earth-like planet at 1 AU ranges between permanent magma ocean states and solidification within 1 Myr. Recently solidified planets typically host H 2 O - or H 2 -dominated atmospheres in the absence of escape. Orbital separation is the primary factor determining magma ocean evolution, followed by the total hydrogen endowment, mantle oxygen fugacity, and finally the planet's C/H ratio. Collisional absorption by H 2 induces a greenhouse effect which can prevent or stall magma ocean solidification. Through this effect, as well as the outgassing of other volatiles, geochemical properties exert significant control over the fate of magma oceans on rocky planets.
More details from the publisher
More details
More details

Pagination

  • First page First
  • Previous page Prev
  • Page 1
  • Current page 2
  • Page 3
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet