Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Atomic and Laser Physics
Credit: Jack Hobhouse

Prof Peter Norreys FInstP;

Professorial Research Fellow

Research theme

  • Accelerator physics
  • Lasers and high energy density science
  • Fundamental particles and interactions
  • Plasma physics

Sub department

  • Atomic and Laser Physics

Research groups

  • Oxford Centre for High Energy Density Science (OxCHEDS)
peter.norreys@physics.ox.ac.uk
Telephone: 01865 (2)72220
Clarendon Laboratory, room 141.1
Peter Norreys' research group
  • About
  • Research
  • Teaching
  • Publications

Modeling of laser-driven proton radiography of dense matter

High Energy Density Physics 4:1-2 (2008) 26-40

Authors:

S Kar, M Borghesi, P Audebert, A Benuzzi-Mounaix, T Boehly, D Hicks, M Koenig, K Lancaster, S Lepape, A Mackinnon, P Norreys, P Patel, L Romagnani

Abstract:

Laser-driven MeV proton beams are highly suitable for quantitative diagnosis of density profiles in dense matter by employing them as a particle probe in a point-projection imaging scheme. Via differential scattering and stopping, the technique allows to detect density modulations in dense compressed matter with intrinsic high spatial and temporal resolutions. The technique offers a viable alternative/complementary route to more established radiographic methods. A Monte-Carlo simulation package, MPRM, has been developed in order to quantify the density profile of the probed object from the experimentally obtained proton radiographs. A discussion of recent progress in this area is presented on the basis of analysis of experimental data, which has been supported by MPRM simulation. © 2008 Elsevier B.V. All rights reserved.
More details from the publisher

Laser heating of solid matter by light-pressure-driven shocks at ultrarelativistic intensities.

Physical review letters 100:16 (2008) 165002

Authors:

KU Akli, SB Hansen, AJ Kemp, RR Freeman, FN Beg, DC Clark, SD Chen, D Hey, SP Hatchett, K Highbarger, E Giraldez, JS Green, G Gregori, KL Lancaster, T Ma, AJ MacKinnon, P Norreys, N Patel, J Pasley, C Shearer, RB Stephens, C Stoeckl, M Storm, W Theobald, LD Van Woerkom, R Weber, MH Key

Abstract:

The heating of solid targets irradiated by 5 x 10(20) W cm(-2), 0.8 ps, 1.05 microm wavelength laser light is studied by x-ray spectroscopy of the K-shell emission from thin layers of Ni, Mo, and V. A surface layer is heated to approximately 5 keV with an axial temperature gradient of 0.6 microm scale length. Images of Ni Ly(alpha) show the hot region has 100 G bar light pressure compresses the preformed plasma and drives a shock into the solid, heating a thin layer.
More details from the publisher
More details
More details

Effect of relativistic plasma on extreme-ultraviolet harmonic emission from intense laser-matter interactions

Physical Review Letters 100:12 (2008)

Authors:

K Krushelnick, W Rozmus, U Wagner, FN Beg, SG Bochkarev, EL Clark, AE Dangor, RG Evans, A Gopal, H Habara, SPD Mangles, PA Norreys, APL Robinson, M Tatarakis, MS Wei, M Zepf

Abstract:

Experiments were performed in which intense laser pulses (up to 9×1019 W/cm2) were used to irradiate very thin (submicron) mass-limited aluminum foil targets. Such interactions generated high-order harmonic radiation (greater than the 25th order) which was detected at the rear of the target and which was significantly broadened, modulated, and depolarized because of passage through the dense relativistic plasma. The spectral modifications are shown to be due to the laser absorption into hot electrons and the subsequent sharply increasing relativistic electron component within the dense plasma. © 2008 The American Physical Society.
More details from the publisher
More details

Laser-driven acceleration of electrons in a partially ionized plasma channel.

Phys Rev Lett 100:10 (2008) 105005

Authors:

TP Rowlands-Rees, C Kamperidis, S Kneip, AJ Gonsalves, SPD Mangles, JG Gallacher, E Brunetti, T Ibbotson, CD Murphy, PS Foster, MJV Streeter, F Budde, PA Norreys, DA Jaroszynski, K Krushelnick, Z Najmudin, SM Hooker

Abstract:

The generation of quasimonoenergetic electron beams, with energies up to 200 MeV, by a laser-plasma accelerator driven in a hydrogen-filled capillary discharge waveguide is investigated. Injection and acceleration of electrons is found to depend sensitively on the delay between the onset of the discharge current and the arrival of the laser pulse. A comparison of spectroscopic and interferometric measurements suggests that injection is assisted by laser ionization of atoms or ions within the channel.
More details from the publisher
More details

Dynamic control of laser-produced proton beams

Physical Review Letters 100:10 (2008)

Authors:

S Kar, K Markey, PT Simpson, C Bellei, JS Green, SR Nagel, S Kneip, DC Carroll, B Dromey, L Willingale, EL Clark, P McKenna, Z Najmudin, K Krushelnick, P Norreys, RJ Clarke, D Neely, M Borghesi, M Zepf

Abstract:

The emission characteristics of intense laser driven protons are controlled using ultrastrong (of the order of 109V/m) electrostatic fields varying on a few ps time scale. The field structures are achieved by exploiting the high potential of the target (reaching multi-MV during the laser interaction). Suitably shaped targets result in a reduction in the proton beam divergence, and hence an increase in proton flux while preserving the high beam quality. The peak focusing power and its temporal variation are shown to depend on the target characteristics, allowing for the collimation of the inherently highly divergent beam and the design of achromatic electrostatic lenses. © 2008 The American Physical Society.
More details from the publisher
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 45
  • Page 46
  • Page 47
  • Page 48
  • Current page 49
  • Page 50
  • Page 51
  • Page 52
  • Page 53
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet