Vulcan petawatt - An ultra-high-intensity interaction facility
Nuclear Fusion 44:12 (2004)
Abstract:
The Vulcan Nd: glass laser at the Central Laser Facility is a Petawatt (1015 W) interaction facility available to the UK and international user community. The facility came online to users in 2002 and considerable experience has been gained operating the Vulcan facility in this mode. The facility is designed to deliver irradiance on target of 1021 W cm-2 for a wide-ranging experimental programme in fundamental physics and advanced applications. This includes the interaction of super-high-intensity light with matter, fast ignition fusion research, photon induced nuclear reactions, electron and ion acceleration by light waves and the exploration of the exotic world of plasma physics dominated by relativity.Plasma devices to guide and collimate a high density of MeV electrons.
Nature 432:7020 (2004) 1005-1008
Abstract:
The development of ultra-intense lasers has facilitated new studies in laboratory astrophysics and high-density nuclear science, including laser fusion. Such research relies on the efficient generation of enormous numbers of high-energy charged particles. For example, laser-matter interactions at petawatt (10(15) W) power levels can create pulses of MeV electrons with current densities as large as 10(12) A cm(-2). However, the divergence of these particle beams usually reduces the current density to a few times 10(6) A cm(-2) at distances of the order of centimetres from the source. The invention of devices that can direct such intense, pulsed energetic beams will revolutionize their applications. Here we report high-conductivity devices consisting of transient plasmas that increase the energy density of MeV electrons generated in laser-matter interactions by more than one order of magnitude. A plasma fibre created on a hollow-cone target guides and collimates electrons in a manner akin to the control of light by an optical fibre and collimator. Such plasma devices hold promise for applications using high energy-density particles and should trigger growth in charged particle optics.Observations of the filamentation of high-intensity laser-produced electron beams
Physical Review E - Statistical, Nonlinear, and Soft Matter Physics 70:5 2 (2004)
Abstract:
The structure of the hot electron beams emitted in laser-solid target interactions was analyzed. It was observed that electron beams were emitted from the rear of thin solid targets irradiated by a high-intensity short-pulse laser. It was shown that the most important condition in which electron beam filamentation due to Weibel-like instabilities become a factor were situations where large regions of low-density plasma exist. The results suggest that Weibel-like instabilities might not be important for the fast-ignitor scheme.Ion acceleration from the shock front induced by hole boring in ultraintense laser-plasma interactions
Physical Review E - Statistical, Nonlinear, and Soft Matter Physics 70:4 2 (2004)
Abstract:
Ion-acceleration processes were studied in ultraintense laser plasma interactions for normal incidence irradiation of solid targets. Neutron spectroscopy was used for the purpose of analysis. It was found that the ions are preferentially accelerated radially. Results show that the laser pedestal generates a 10 μm scale length in the coronal plasma with a 3 μm scale-length plasma near the critical density.Operation of a single-photon-counting x-ray charge-coupled device camera spectrometer in a petawatt environment
Review of Scientific Instruments 75:10 II (2004) 3705-3707