Fast heating of super-solid density plasmas towards laser fusion ignition
Plasma Physics and Controlled Fusion 44:12 B SPEC (2002)
Abstract:
We have studied fast heating of highly compressed plasmas using multi 100 TW laser light. Efficient propagation of the ultra-intense laser light and heating of the imploded plasmas were realized with a cone-attached shell target. Energy deposition rate of the ultra-intense laser pulse into high-density plasmas was evaluated from neutron measurements. Generation and propagation property of energetic electrons in the ultra-intense laser interactions were also investigated with solid density targets. About 40% of the laser energy converted to mega electron volts energetic electrons in the interactions with solid targets at intensities of 1019W cm-2. These electrons propagated in the high-density plasmas with a divergence of 20-30° or jet-like collimation. Taking account of these experimental results, heating laser spot size is optimized for laser fusion ignition with a simple estimation.Using self-generated harmonics as a diagnostic of high intensity laser-produced plasmas
Plasma Physics and Controlled Fusion 44:12 B SPEC (2002) B233-B245
Abstract:
The interaction of high intensity laser pulses (up to I ∼ 1020 W cm-2) with plasmas can generate very high order harmonics of the laser frequency (up to the 75th order have been observed). Measurements of the properties of these harmonics can provide important insights into the plasma conditions which exist during such interactions. For example, observations of the spectrum of the harmonic emission can provide information of the dynamics of the critical surface as well as information on relativistic non-linear optical effects in the plasma. However, most importantly, observations of the polarization properties of the harmonics can provide a method to measure the ultra-strong magnetic fields (greater than 350 MG) which can be generated during these interactions. It is likely that such techniques can be scaled to provide a significant amount of information from experiments at even higher intensities.Advanced Concepts in Fast Ignition and the Relevant Diagnostics
Chapter in Advanced Diagnostics for Magnetic and Inertial Fusion, Springer Nature (2002) 71-78
Laser generation of proton beams for the production of short-lived positron emitting radioisotopes
Nuclear Instruments and Methods in Physics Research Section B Beam Interactions with Materials and Atoms 183:3-4 (2001) 449-458
Abstract:
Protons of energies up to 37 MeV have been generated when ultra-intense lasers (up to 1020Wcm-2) interact with hydrogen containing solid targets. These protons can be used to induce nuclear reactions in secondary targets to produce β+-emitting nuclei of relevance to the nuclear medicine community, namely 11C and 13N via (p,n) and (p,α) reactions. Activities of the order of 200 kBq have been measured from a single laser pulse interacting with a thin solid target. The possibility of using ultra-intense lasers to produce commercial amounts of short-lived positron emitting sources for positron emission tomography (PET) is discussed. © 2001 Elsevier Science B.V. All rights reserved.Effects of self-generated electric and magnetic fields in laser-generated fast electron propagation in solid materials: Electric inhibition and beam pinching
Laser and Particle Beams 19:1 (2001) 59-65