Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Atomic and Laser Physics
Credit: Jack Hobhouse

Prof Peter Norreys FInstP;

Professorial Research Fellow

Research theme

  • Accelerator physics
  • Lasers and high energy density science
  • Fundamental particles and interactions
  • Plasma physics

Sub department

  • Atomic and Laser Physics

Research groups

  • Oxford Centre for High Energy Density Science (OxCHEDS)
peter.norreys@physics.ox.ac.uk
Telephone: 01865 (2)72220
Clarendon Laboratory, room 141.1
Peter Norreys' research group
  • About
  • Research
  • Teaching
  • Publications

Laser generation of proton beams for the production of short-lived positron emitting radioisotopes

Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms 183:3-4 (2001) 449-458

Authors:

I Spencer, KWD Ledingham, RP Singhal, T McCanny, P McKenna, EL Clark, K Krushelnick, M Zepf, FN Beg, M Tatarakis, AE Dangor, PA Norreys, RJ Clarke, RM Allott, IN Ross

Abstract:

Protons of energies up to 37 MeV have been generated when ultra-intense lasers (up to 1020Wcm-2) interact with hydrogen containing solid targets. These protons can be used to induce nuclear reactions in secondary targets to produce β+-emitting nuclei of relevance to the nuclear medicine community, namely 11C and 13N via (p,n) and (p,α) reactions. Activities of the order of 200 kBq have been measured from a single laser pulse interacting with a thin solid target. The possibility of using ultra-intense lasers to produce commercial amounts of short-lived positron emitting sources for positron emission tomography (PET) is discussed. © 2001 Elsevier Science B.V. All rights reserved.
More details from the publisher

Effects of self-generated electric and magnetic fields in laser-generated fast electron propagation in solid materials: Electric inhibition and beam pinching

Laser and Particle Beams 19:1 (2001) 59-65

Authors:

A Bernardinello, D Batani, A Antonicci, F Pisani, M Koenig, L Gremillet, F Amiranoff, S Baton, E Martinolli, C Rousseaux, TA Hall, P Norreys, A Djaoui

Abstract:

We present some experimental results which demonstrate the presence of electric inhibition in the propagation of relativistic electrons generated by intense laser pulses, depending on target conductivity. The use of transparent targets and shadowgraphic techniques has made it possible to evidence electron jets moving at the speed of light, an indication of the presence of self-generated strong magnetic fields.
More details from the publisher

Fast heating of ultrahigh-density plasma as a step towards laser fusion ignition

Nature 412:6849 (2001) 798-802

Authors:

R Kodama, PA Norreys, K Mima, AE Dangor, RG Evans, H Fujita, Y Kitagawa, K Krushelnick, T Miyakoshi, N Miyanaga, T Norimatsu, SJ Rose, T Shozaki, K Shigemori, A Sunahara, M Tampo, KA Tanaka, Y Toyama, T Yamanaka, M Zepf

Abstract:

Modern high-power lasers can generate extreme states of matter that are relevant to astrophysics, equation-of-state studies and fusion energy research. Laser-driven implosions of spherical polymer shells have, for example, achieved an increase in density of 1,000 times relative to the solid state. These densities are large enough to enable controlled fusion, but to achieve energy gain a small volume of compressed fuel (known as the 'spark') must be heated to temperatures of about 108 K (corresponding to thermal energies in excess of 10 keV). In the conventional approach to controlled fusion, the spark is both produced and heated by accurately timed shock waves, but this process requires both precise implosion symmetry and a very large drive energy. In principle, these requirements can be significantly relaxed by performing the compression and fast heating separately; however, this 'fast ignitor' approach also suffers drawbacks, such as propagation losses and deflection of the ultra-intense laser pulse by the plasma surrounding the compressed fuel. Here we employ a new compression geometry that eliminates these problems; we combine production of compressed matter in a laser-driven implosion with picosecond-fast heating by a laser pulse timed to coincide with the peak compression. Our approach therefore permits efficient compression and heating to be carried out simultaneously, providing a route to efficient fusion energy production.
More details from the publisher
More details
More details

High intensity laser generation of proton beams for the production of β+ sources used in positron emission tomography

AIP Conference Proceedings AIP Publishing 584:1 (2001) 73-78

Authors:

I Spencer, KWD Ledingham, RP Singhal, T McCanny, EL Clark, K Krushelnick, M Zepf, FN Beg, M Tatarakis, C Escoda, M Norrefeldt, AE Dangor, PA Norreys, RJ Clarke, RM Allott
More details from the publisher

Collisionless shock and supernova remnant simulations on VULCAN

Physics of Plasmas 8:5 II (2001) 2439-2445

Authors:

NC Woolsey, Y Abou Ali, RG Evans, RAD Grundy, SJ Pestehe, PG Carolan, NJ Conway, RO Dendy, P Helander, KG McClements, JG Kirk, PA Norreys, MM Notley, SJ Rose

Abstract:

The VULCAN [C. N. Danson et al., Opt. Commun. 103, 392 (1993)] laser at the UK Central Laser Facility is being used for laboratory-based simulations of collisionless shocks. By ensuring that key dimensionless parameters in the experiments have values similar to those of supernova remnants (SNRs), the hydrodynamics and magnetic field of the experiment are scaled to those of a SNR. This makes it possible to investigate experimentally the physics of collisionless magnetized shocks in such objects. The experiments are providing data against which to test current theory. Collisionless shock formation and the interaction of two counterpropagating colliding plasmas permeated by a strong magnetic field are discussed. © 2001 American Institute of Physics.
More details from the publisher
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 73
  • Page 74
  • Page 75
  • Page 76
  • Current page 77
  • Page 78
  • Page 79
  • Page 80
  • Page 81
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet