On the predictability of the extreme summer 2003 over Europe
Geophysical Research Letters 38:5 (2011)
Abstract:
The European summer 2003 is a prominent example for an extreme hot and dry season. The main mechanisms that contributed to the growth of the heat wave are still disputed and state-of-the-art climate models have difficulty to realistically simulate the extreme conditions. Here we analyse simulations using recent versions of the European Centre for Medium-Range Weather Forecasts seasonal ensemble forecasting system and present, for the first time, retrospective forecasts which simulate accurately not only the abnormal warmth but also the observed precipitation and mid-tropospheric circulation patterns. It is found that while the land surface hydrology plays a crucial role, the successful simulations also required revised formulations of the radiative and convective parameterizations. We conclude that the predictability of the event was less due to remote teleconnections effects and more due to in situ processes which helped maintain the dry surface anomalies occurring at the beginning of the summer. Copyright 2011 by the American Geophysical Union.Diagnosing the causes of bias in climate models - why is it so hard?
Geophysical and Astrophysical Fluid Dynamics 105:2-3 (2011) 351-365
Abstract:
The equations of climate are, in principle, known. Why then is it so hard to formulate a biasfree model of climate? Here, some ideas in nonlinear dynamics are explored to try to answer this question. Specifically it is suggested that the climatic response to physically different forcings shows a tendency to project onto structures corresponding to the systems natural internal modes of variability. This is shown using results from complex climate models and from the relatively simple Lorenz three-component model. It is suggested that this behaviour is consistent with what might be expected from the fluctuation-dissipation theorem. Based on this, it is easy to see how climate models can easily suffer from having errors in the representation of two or more different physical processes, whose responses compensate one another and hence make individual error diagnosis difficult. A proposal is made to try to overcome these problems and advance the science needed to develop a bias-free climate model. The proposal utilises powerful diagnostics from data assimilation. The key point here is that these diagnostics derive from short-range forecast tendencies, estimated long before the model has asymptotically settled down to its (biased) climate attractor. However, it is shown that these diagnostics will not identify all sources of model error, and a so-called "bias of the second kind" is discussed. This latter bias may be alleviated by recently developed stochastic parametrisations. © 2011 Taylor & Francis.The Invariant Set Hypothesis: A New Geometric Framework for the Foundations of Quantum Theory and the Role Played by Gravity
Electronic Notes in Theoretical Computer Science Elsevier 270:2 (2011) 115-119
Decadal climate prediction with the European Centre for Medium-Range Weather Forecasts coupled forecast system: Impact of ocean observations
Journal of Geophysical Research Atmospheres 116:19 (2011)
Abstract:
Three 10 year ensemble decadal forecast experiments have been performed with the European Centre for Medium-Range Weather Forecasts coupled forecast system using an initialization strategy common in seasonal forecasting with realistic initial conditions. One experiment initializes the ocean in a standard way using an ocean-only simulation forced with an atmospheric reanalysis and with strong relaxation to observed sea surface temperatures. The other two experiments initialize the ocean from a similar ocean-only run that, in addition, assimilates subsurface observations. This is the first time that these experiments were performed. The system drifts from the realistic initial conditions toward the model climate, the drift being of the same order as, if not larger than, the interannual signal. There are small drift differences in the three experiments that reflect mainly the influence of dynamical ocean processes in controlling the adjustment between the initialized state and the model climate in the extratropics. In spite of the drift, the predictions show that the system is able to skillfully predict some of the interannual variability of the global and regional air and ocean temperature. No significant forecast quality benefit of the assimilation of ocean observations is found over the extratropics, although a negative impact of the assimilation of incorrect expendable bathythermograph profiles has been found for the global mean upper ocean heat content and the Atlantic multidecadal oscillation. The results illustrate the importance of reducing the important model drift and the ocean analysis uncertainty. Copyright 2011 by the American Geophysical Union.A CERN for climate change
PHYSICS WORLD 24:3 (2011) 14-15