Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Juno Jupiter image

Tim Palmer

Emeritus

Sub department

  • Atmospheric, Oceanic and Planetary Physics

Research groups

  • Predictability of weather and climate
Tim.Palmer@physics.ox.ac.uk
Telephone: 01865 (2)72897
Robert Hooke Building, room S43
  • About
  • Publications

The Invariant Set Hypothesis: A New Geometric Framework for the Foundations of Quantum Theory and the Role Played by Gravity

Electronic Notes in Theoretical Computer Science Elsevier 270:2 (2011) 115-119
More details from the publisher

Decadal climate prediction with the European Centre for Medium-Range Weather Forecasts coupled forecast system: Impact of ocean observations

Journal of Geophysical Research Atmospheres 116:19 (2011)

Authors:

FJ Doblas-Reyes, MA Balmaseda, A Weisheimer, TN Palmer

Abstract:

Three 10 year ensemble decadal forecast experiments have been performed with the European Centre for Medium-Range Weather Forecasts coupled forecast system using an initialization strategy common in seasonal forecasting with realistic initial conditions. One experiment initializes the ocean in a standard way using an ocean-only simulation forced with an atmospheric reanalysis and with strong relaxation to observed sea surface temperatures. The other two experiments initialize the ocean from a similar ocean-only run that, in addition, assimilates subsurface observations. This is the first time that these experiments were performed. The system drifts from the realistic initial conditions toward the model climate, the drift being of the same order as, if not larger than, the interannual signal. There are small drift differences in the three experiments that reflect mainly the influence of dynamical ocean processes in controlling the adjustment between the initialized state and the model climate in the extratropics. In spite of the drift, the predictions show that the system is able to skillfully predict some of the interannual variability of the global and regional air and ocean temperature. No significant forecast quality benefit of the assimilation of ocean observations is found over the extratropics, although a negative impact of the assimilation of incorrect expendable bathythermograph profiles has been found for the global mean upper ocean heat content and the Atlantic multidecadal oscillation. The results illustrate the importance of reducing the important model drift and the ocean analysis uncertainty. Copyright 2011 by the American Geophysical Union.
More details from the publisher

A CERN for climate change

PHYSICS WORLD 24:3 (2011) 14-15
More details
More details from the publisher

ECMWF seasonal forecast system 3 and its prediction of sea surface temperature

CLIMATE DYNAMICS 37:3-4 (2011) 455-471

Authors:

Timothy N Stockdale, David LT Anderson, Magdalena A Balmaseda, Francisco Doblas-Reyes, Laura Ferranti, Kristian Mogensen, Timothy N Palmer, Franco Molteni, Frederic Vitart
More details from the publisher

EC-Earth: A seamless Earth-system prediction approach in action

Bulletin of the American Meteorological Society 91:10 (2010) 1357-1363

Authors:

W Hazeleger, C Severijns, T Semmler, S Ştefǎnescu, S Yang, X Wang, K Wyser, E Dutra, JM Baldasano, R Bintanja, P Bougeault, R Caballero, AML Ekman, JH Christensen, B Van Den Hurk, P Jimenez, C Jones, P Kållberg, T Koenigk, R McGrath, P Miranda, T Van Noije, T Palmer, JA Parodi, T Schmith, F Selten, T Storelvmo, A Sterl, H Tapamo, M Vancoppenolle, P Viterbo, U Willén

Abstract:

The EC-Earth consortium is a grouping of meteorologists and Earth-system scientists from 10 European countries, put together to face the challenges of climate and weather forecasting. The NWP system of the European Centre for Medium-Range Weather Forecasts (ECWMF) forms the basis of the EC-Earth Earth-system model. NWP models are designed to accurately capture short-term atmospheric fluctuations. They are used for forecasts at daily-to-seasonal time scales and include data assimilation capabilities. Climate models are designed to represent the global coupled ocean-atmosphere system. The atmospheric model of EC-Earth version 2, is based on ECMWF's Integrated Forecasting System (IFS), cycle 31R1, corresponding to the current seasonal forecast system of ECMWF. The EC-Earth consortium and ECMWF are collaborating on development of initialization procedures to improve long-term predictions. The EC-Earth model displays good performance from daily up to inter-annual time scales and for long-term mean climate.
More details from the publisher
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 26
  • Page 27
  • Page 28
  • Page 29
  • Current page 30
  • Page 31
  • Page 32
  • Page 33
  • Page 34
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet