Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Juno Jupiter image

Tim Palmer

Emeritus

Sub department

  • Atmospheric, Oceanic and Planetary Physics

Research groups

  • Predictability of weather and climate
Tim.Palmer@physics.ox.ac.uk
Telephone: 01865 (2)72897
Robert Hooke Building, room S43
  • About
  • Publications

Taxonomy for physics beyond quantum mechanics

Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences The Royal Society 480:2294 (2024) 20230779

Authors:

Emily Adlam, Jonte R Hance, Sabine Hossenfelder, Tim N Palmer

Abstract:

We propose terminology to classify interpretations of quantum mechanics and models that modify or complete quantum mechanics. Our focus is on models which have previously been referred to as superdeterministic (strong or weak), retrocausal (with or without signalling, dynamical or non-dynamical), future-input-dependent, atemporal and all-at-once, not always with the same meaning or context. Sometimes, these models are assumed to be deterministic, sometimes not, the word deterministic has been given different meanings, and different notions of causality have been used when classifying them. This has created much confusion in the literature, and we hope that the terms proposed here will help to clarify the nomenclature. The general model framework that we will propose may also be useful to classify other interpretations and modifications of quantum mechanics. This document grew out of the discussions at the 2022 Bonn Workshop on Superdeterminism and Retrocausality.
More details from the publisher
Details from ORA

Heatwave attribution based on reliable operational weather forecasts

Nature Communications Springer Nature 15:1 (2024) 4530

Authors:

Nicholas Leach, Christopher D Roberts, Matthias Aengenheyster, Daniel Heathcote, Dann M Mitchell, Vikki Thompson, Timothy Palmer, Antje Weisheimer, Myles R Allen

Abstract:

The 2021 Pacific Northwest heatwave was so extreme as to challenge conventional statistical and climate-model-based approaches to extreme weather attribution. However, state-of-the-art operational weather prediction systems are demonstrably able to simulate the detailed physics of the heatwave. Here, we leverage these systems to show that human influence on the climate made this event at least 8 [2–50] times more likely. At the current rate of global warming, the likelihood of such an event is doubling every 20 [10–50] years. Given the multi-decade lower-bound return-time implied by the length of the historical record, this rate of change in likelihood is highly relevant for decision makers. Further, forecast-based attribution can synthesise the conditional event-specific storyline and unconditional event-class probabilistic approaches to attribution. If developed as a routine service in forecasting centres, it could provide reliable estimates of human influence on extreme weather risk, which is critical to supporting effective adaptation planning.
More details from the publisher
Details from ORA
More details
More details

Heatwave attribution based on reliable operational weather forecasts

Nature Communications Nature Research 15:1 (2024) 4530

Authors:

Nicholas J Leach, Christopher D Roberts, Matthias Aengenheyster, Daniel Heathcote, Dann M Mitchell, Vikki Thompson, Tim Palmer, Antje Weisheimer, Myles R Allen

Abstract:

The 2021 Pacific Northwest heatwave was so extreme as to challenge conventional statistical and climate-model-based approaches to extreme weather attribution. However, state-of-the-art operational weather prediction systems are demonstrably able to simulate the detailed physics of the heatwave. Here, we leverage these systems to show that human influence on the climate made this event at least 8 [2–50] times more likely. At the current rate of global warming, the likelihood of such an event is doubling every 20 [10–50] years. Given the multi-decade lower-bound return-time implied by the length of the historical record, this rate of change in likelihood is highly relevant for decision makers. Further, forecast-based attribution can synthesise the conditional event-specific storyline and unconditional event-class probabilistic approaches to attribution. If developed as a routine service in forecasting centres, it could provide reliable estimates of human influence on extreme weather risk, which is critical to supporting effective adaptation planning.
More details from the publisher

Superdeterminism without Conspiracy †

Universe MDPI 10:1 (2024) 47
More details from the publisher
More details

Postprocessing East African rainfall forecasts using a generative machine learning model

(2024)

Authors:

Bobby Antonio, Andrew McRae, David MacLeod, Fenwick Cooper, John Marsham, Laurence Aitchison, Tim Palmer, Peter Watson
More details from the publisher

Pagination

  • Current page 1
  • Page 2
  • Page 3
  • Page 4
  • Page 5
  • Page 6
  • Page 7
  • Page 8
  • Page 9
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet