Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
WASp-121b at different phases as would be seen by an observer, modelled with the 3D SPARC/MITgcm.

The hot Jupiter WASP-121b at different phases as would be seen by an observer, modelled with the 3D SPARC/MITgcm.

Credit: Vivien Parmentier

Vivien Parmentier

Visitor

Research theme

  • Astronomy and astrophysics
  • Exoplanets and planetary physics

Sub department

  • Atmospheric, Oceanic and Planetary Physics

Research groups

  • Exoplanet atmospheres
  • Exoplanets and Stellar Physics
vivien.parmentier@physics.ox.ac.uk
Telephone: 01865282458
Atmospheric Physics Clarendon Laboratory, room 116
Current website
  • About
  • Publications

Atmospheric Retrievals of the Phase-resolved Spectra of Irradiated Brown Dwarfs WD-0137B and EPIC-2122B

The Astrophysical Journal American Astronomical Society 968:2 (2024) 126

Authors:

Joshua D Lothringer, Yifan Zhou, Dániel Apai, Xianyu Tan, Vivien Parmentier, Sarah L Casewell
More details from the publisher
More details

A high internal heat flux and large core in a warm Neptune exoplanet.

Nature 630:8018 (2024) 836-840

Authors:

Luis Welbanks, Taylor J Bell, Thomas G Beatty, Michael R Line, Kazumasa Ohno, Jonathan J Fortney, Everett Schlawin, Thomas P Greene, Emily Rauscher, Peter McGill, Matthew Murphy, Vivien Parmentier, Yao Tang, Isaac Edelman, Sagnick Mukherjee, Lindsey S Wiser, Pierre-Olivier Lagage, Achrène Dyrek, Kenneth E Arnold

Abstract:

Interactions between exoplanetary atmospheres and internal properties have long been proposed to be drivers of the inflation mechanisms of gaseous planets and apparent atmospheric chemical disequilibrium conditions1. However, transmission spectra of exoplanets have been limited in their ability to observationally confirm these theories owing to the limited wavelength coverage of the Hubble Space Telescope (HST) and inferences of single molecules, mostly H2O (ref. 2). In this work, we present the panchromatic transmission spectrum of the approximately 750 K, low-density, Neptune-sized exoplanet WASP-107b using a combination of HST Wide Field Camera 3 (WFC3) and JWST Near-Infrared Camera (NIRCam) and Mid-Infrared Instrument (MIRI). From this spectrum, we detect spectroscopic features resulting from H2O (21σ), CH4 (5σ), CO (7σ), CO2 (29σ), SO2 (9σ) and NH3 (6σ). The presence of these molecules enables constraints on the atmospheric metal enrichment (M/H is 10-18× solar3), vertical mixing strength (log10Kzz = 8.4-9.0 cm2 s-1) and internal temperature (>345 K). The high internal temperature is suggestive of tidally driven inflation4 acting on a Neptune-like internal structure, which can naturally explain the large radius and low density of the planet. These findings suggest that eccentricity-driven tidal heating is a critical process governing atmospheric chemistry and interior-structure inferences for most of the cool (<1,000 K) super-Earth-to-Saturn-mass exoplanet population.
More details from the publisher
More details
More details

Time-resolved Hubble Space Telescope Wide Field Camera 3 Spectrophotometry Reveals Inefficient Day-to-night Heat Redistribution in the Highly Irradiated Brown Dwarf SDSS 1557B

The Astrophysical Journal American Astronomical Society 966:1 (2024) 4

Authors:

Rachael C Amaro, Dániel Apai, Ben WP Lew, Yifan Zhou, Joshua D Lothringer, Sarah L Casewell, Xianyu Tan, Travis Barman, Mark S Marley, LC Mayorga, Vivien Parmentier
More details from the publisher
More details

Global Chemical Transport on Hot Jupiters: Insights from the 2D VULCAN Photochemical Model

The Astrophysical Journal American Astronomical Society 963:1 (2024) 41

Authors:

Shang-Min Tsai, Vivien Parmentier, João M Mendonça, Xianyu Tan, Russell Deitrick, Mark Hammond, Arjun B Savel, Xi Zhang, Raymond T Pierrehumbert, Edward W Schwieterman
More details from the publisher
More details

Sulfur dioxide in the mid-infrared transmission spectrum of WASP-39b.

Nature 626:8001 (2024) 979-983

Authors:

Diana Powell, Adina D Feinstein, Elspeth KH Lee, Michael Zhang, Shang-Min Tsai, Jake Taylor, James Kirk, Taylor Bell, Joanna K Barstow, Peter Gao, Jacob L Bean, Jasmina Blecic, Katy L Chubb, Ian JM Crossfield, Sean Jordan, Daniel Kitzmann, Sarah E Moran, Giuseppe Morello, Julianne I Moses, Luis Welbanks, Jeehyun Yang, Xi Zhang, Eva-Maria Ahrer, Aaron Bello-Arufe, Jonathan Brande, SL Casewell, Nicolas Crouzet, Patricio E Cubillos, Brice-Olivier Demory, Achrène Dyrek, Laura Flagg, Renyu Hu, Julie Inglis, Kathryn D Jones, Laura Kreidberg, Mercedes López-Morales, Pierre-Olivier Lagage, Erik A Meier Valdés, Yamila Miguel, Vivien Parmentier, Anjali AA Piette, Benjamin V Rackham, Michael Radica, Seth Redfield, Kevin B Stevenson, Hannah R Wakeford, Keshav Aggarwal, Munazza K Alam, Natalie M Batalha, Natasha E Batalha, Björn Benneke, Zach K Berta-Thompson, Ryan P Brady, Claudio Caceres, Aarynn L Carter, Jean-Michel Désert, Joseph Harrington, Nicolas Iro, Michael R Line, Joshua D Lothringer, Ryan J MacDonald, Luigi Mancini, Karan Molaverdikhani, Sagnick Mukherjee, Matthew C Nixon, Apurva V Oza, Enric Palle, Zafar Rustamkulov, David K Sing, Maria E Steinrueck, Olivia Venot, Peter J Wheatley, Sergei N Yurchenko

Abstract:

The recent inference of sulfur dioxide (SO2) in the atmosphere of the hot (approximately 1,100 K), Saturn-mass exoplanet WASP-39b from near-infrared JWST observations1-3 suggests that photochemistry is a key process in high-temperature exoplanet atmospheres4. This is because of the low (<1 ppb) abundance of SO2 under thermochemical equilibrium compared with that produced from the photochemistry of H2O and H2S (1-10 ppm)4-9. However, the SO2 inference was made from a single, small molecular feature in the transmission spectrum of WASP-39b at 4.05 μm and, therefore, the detection of other SO2 absorption bands at different wavelengths is needed to better constrain the SO2 abundance. Here we report the detection of SO2 spectral features at 7.7 and 8.5 μm in the 5-12-μm transmission spectrum of WASP-39b measured by the JWST Mid-Infrared Instrument (MIRI) Low Resolution Spectrometer (LRS)10. Our observations suggest an abundance of SO2 of 0.5-25 ppm (1σ range), consistent with previous findings4. As well as SO2, we find broad water-vapour absorption features, as well as an unexplained decrease in the transit depth at wavelengths longer than 10 μm. Fitting the spectrum with a grid of atmospheric forward models, we derive an atmospheric heavy-element content (metallicity) for WASP-39b of approximately 7.1-8.0 times solar and demonstrate that photochemistry shapes the spectra of WASP-39b across a broad wavelength range.
More details from the publisher
More details
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 2
  • Page 3
  • Page 4
  • Page 5
  • Current page 6
  • Page 7
  • Page 8
  • Page 9
  • Page 10
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet