Atmospheric Retrievals of the Phase-resolved Spectra of Irradiated Brown Dwarfs WD-0137B and EPIC-2122B
The Astrophysical Journal American Astronomical Society 968:2 (2024) 126
A high internal heat flux and large core in a warm Neptune exoplanet.
Nature 630:8018 (2024) 836-840
Abstract:
Interactions between exoplanetary atmospheres and internal properties have long been proposed to be drivers of the inflation mechanisms of gaseous planets and apparent atmospheric chemical disequilibrium conditions1. However, transmission spectra of exoplanets have been limited in their ability to observationally confirm these theories owing to the limited wavelength coverage of the Hubble Space Telescope (HST) and inferences of single molecules, mostly H2O (ref. 2). In this work, we present the panchromatic transmission spectrum of the approximately 750 K, low-density, Neptune-sized exoplanet WASP-107b using a combination of HST Wide Field Camera 3 (WFC3) and JWST Near-Infrared Camera (NIRCam) and Mid-Infrared Instrument (MIRI). From this spectrum, we detect spectroscopic features resulting from H2O (21σ), CH4 (5σ), CO (7σ), CO2 (29σ), SO2 (9σ) and NH3 (6σ). The presence of these molecules enables constraints on the atmospheric metal enrichment (M/H is 10-18× solar3), vertical mixing strength (log10Kzz = 8.4-9.0 cm2 s-1) and internal temperature (>345 K). The high internal temperature is suggestive of tidally driven inflation4 acting on a Neptune-like internal structure, which can naturally explain the large radius and low density of the planet. These findings suggest that eccentricity-driven tidal heating is a critical process governing atmospheric chemistry and interior-structure inferences for most of the cool (<1,000 K) super-Earth-to-Saturn-mass exoplanet population.Time-resolved Hubble Space Telescope Wide Field Camera 3 Spectrophotometry Reveals Inefficient Day-to-night Heat Redistribution in the Highly Irradiated Brown Dwarf SDSS 1557B
The Astrophysical Journal American Astronomical Society 966:1 (2024) 4
Global Chemical Transport on Hot Jupiters: Insights from the 2D VULCAN Photochemical Model
The Astrophysical Journal American Astronomical Society 963:1 (2024) 41
Sulfur dioxide in the mid-infrared transmission spectrum of WASP-39b.
Nature 626:8001 (2024) 979-983