Long duration gamma-ray bursts: hydrodynamic instabilities in collapsar disks
ArXiv 1006.4624 (2010)
Abstract:
We present 3D numerical simulations of the early evolution of long-duration gamma-ray bursts in the collapsar scenario. Starting from the core-collapse of a realistic progenitor model, we follow the formation and evolution of a central black hole and centrifugally balanced disk. The dense, hot accretion disk produces freely-escaping neutrinos and is hydrodynamically unstable to clumping and to forming non-axisymmetric (m=1, 2) modes. We show that these spiral structures, which form on dynamical timescales, can efficiently transfer angular momentum outward and can drive the high required accretion rates (>=0.1-1 M_sun) for producing a jet. We utilise the smoothed particle hydrodynamics code, Gadget-2, modified to implement relevant microphysics, such as cooling by neutrinos, a plausible treatment approximating the central object and relativistic effects. Finally, we discuss implications of this scenario as a source of energy to produce relativistically beamed gamma-ray jets.Hot subdwarf stars in close-up view I. Rotational properties of subdwarf B stars in close binary systems and nature of their unseen companions
ArXiv 1005.4785 (2010)
Abstract:
The origin of hot subdwarf B stars (sdBs) is still unclear. About half of the known sdBs are in close binary systems for which common envelope ejection is the most likely formation channel. Little is known about this dynamic phase of binary evolution. Due to the tidal influence of the companion in close binary systems, the rotation of the primary becomes synchronised to its orbital motion. In this case it is possible to constrain the mass of the companion, if the primary mass, its projected rotational velocity as well as its surface gravity are known. For the first time we measured the projected rotational velocities of a large sdB binary sample from high resolution spectra. We analysed a sample of 51 sdB stars in close binaries, 40 of which have known orbital parameters comprising half of all such systems known today. Synchronisation in sdB binaries is discussed both from the theoretical and the observational point of view. The masses and the nature of the unseen companions could be constrained in 31 cases. The companions to seven sdBs could be clearly identified as late M stars. One binary may have a brown dwarf companion. The unseen companions of nine sdBs are white dwarfs with typical masses. The mass of one white dwarf companion is very low. In eight cases the companion mass exceeds 0.9 solar masses, four of which even exceed the Chandrasekhar limit indicating that they may be neutron stars. Even stellar mass black holes are possible for the most massive companions. The distribution of the inclinations of the systems with low mass companions appears to be consistent with expectations, whereas a lack of high inclinations becomes obvious for the massive systems. We show that the formation of such systems can be explained with common envelope evolution and present an appropriate formation channel including two phases of unstable mass transfer and one supernova explosion.Spectroscopic Discovery of the Broad-Lined Type Ic Supernova 2010bh Associated with the Low-Redshift GRB 100316D
ArXiv 1004.2262 (2010)
Abstract:
We present the spectroscopic discovery of a broad-lined Type Ic supernova (SN 2010bh) associated with the nearby long-duration gamma-ray burst (GRB) 100316D. At z = 0.0593, this is the third-nearest GRB-SN. Nightly optical spectra obtained with the Magellan telescopes during the first week after explosion reveal the gradual emergence of very broad spectral features superposed on a blue continuum. The supernova features are typical of broad-lined SNe Ic and are generally consistent with previous supernovae associated with low-redshift GRBs. However, the inferred velocities of SN 2010bh at 21 days after explosion are a factor of ~2 times larger than those of the prototypical SN 1998bw at similar epochs, with v ~ 26,000 km/s, indicating a larger explosion energy or a different ejecta structure. A near-infrared spectrum taken 13.8 days after explosion shows no strong evidence for He I at 1.083 microns, implying that the progenitor was largely stripped of its helium envelope. The host galaxy is of low luminosity (M_R ~ -18.5 mag) and low metallicity (Z < 0.4 Z_solar), similar to the hosts of other low-redshift GRB-SNe.Explosive Common-Envelope Ejection: Implications for Gamma-Ray Bursts and Low-Mass Black-Hole Binaries
ArXiv 1004.0249 (2010)
Abstract:
We present a new mechanism for the ejection of a common envelope in a massive binary, where the energy source is nuclear energy rather than orbital energy. This can occur during the slow merger of a massive primary with a secondary of 1-3 Msun when the primary has already completed helium core burning. We show that, in the final merging phase, hydrogen-rich material from the secondary can be injected into the helium-burning shell of the primary. This leads to a nuclear runaway and the explosive ejection of both the hydrogen and the helium layer, producing a close binary containing a CO star and a low-mass companion. We argue that this presents a viable scenario to produce short-period black-hole binaries and long-duration gamma-ray bursts (LGRBs). We estimate a LGRB rate of about 1.e-6 per year at solar metallicity, which implies that this may account for a significant fraction of all LGRBs, and that this rate should be higher at lower metallicity.The formation of hot subdwarf stars and its implications for the UV-upturn phenomenon of elliptical galaxies
Astrophysics and Space Science 329:1 (2010) 41-48