Evolution of binary stars and its implications for evolutionary population synthesis
ArXiv 0910.2546 (2009)
Abstract:
Most stars are members of binaries, and the evolution of a star in a close binary system differs from that of an ioslated star due to the proximity of its companion star. The components in a binary system interact in many ways and binary evolution leads to the formation of many peculiar stars, including blue stragglers and hot subdwarfs. We will discuss binary evolution and the formation of blue stragglers and hot subdwarfs, and show that those hot objects are important in the study of evolutionary population synthesis (EPS), and conclude that binary interactions should be included in the study of EPS. Indeed, binary interactions make a stellar population younger (hotter), and the far-ultraviolet (UV) excess in elliptical galaxies is shown to be most likely resulted from binary interactions. This has major implications for understanding the evolution of the far-UV excess and elliptical galaxies in general. In particular, it implies that the far-UV excess is not a sign of age, as had been postulated prviously and predicts that it should not be strongly dependent on the metallicity of the population, but exists universally from dwarf ellipticals to giant ellipticals.A γ-ray burst at a redshift of z ≈ 8.2
Nature Springer Science and Business Media LLC 461:7268 (2009) 1254-1257
Subaru high-resolution spectroscopy of Star G in the Tycho supernova remnant
ArXiv 0906.0982 (2009)
Abstract:
It is widely believed that Type Ia supernovae (SN Ia) originate in binary systems where a white dwarf accretes material from a companion star until its mass approaches the Chandrasekhar mass and carbon is ignited in the white dwarf's core. This scenario predicts that the donor star should survive the supernova explosion, providing an opportunity to understand the progenitors of Type Ia supernovae.In this paper we argue that rotation is a generic signature expected of most non-giant donor stars that is easily measurable. \citep{2004Natur.431.1069R} examined stars in the center of the remnant of SN 1572 (Tycho's SN) and showed evidence that a subgiant star (Star G by their naming convention) near the remnant's centre was the system's donor star. We present high-resolution (R \simeq 40000) spectra taken with the High Dispersion Spectrograph on Subaru of this candidate donor star and measure the star's radial velocity as $79\pm 2$ \kms with respect to the LSR and put an upper limit on the star's rotation of 7.5 \kms. In addition, by comparing images that were taken in 1970 and 2004, we measure the proper motion of Star G to be $\mu_l = -1.6 \pm 2.1$ \masyr and $\mu_b = -2.7 \pm 1.6$ \masyr. We demonstrate that all of the measured properties of Star G presented in this paper are consistent with those of a star in the direction of Tycho's SN that is not associated with the supernova event. However, we discuss an unlikely, but still viable scenario for Star G to be the donor star, and suggest further observations that might be able to confirm or refute it.The Past and Future History of Regulus
ArXiv 0904.0395 (2009)
Abstract:
We show how the recent discovery of a likely close white dwarf companion to the well known star Regulus, one of the brightest stars in the sky, leads to considerable insight into the prior evolutionary history of this star, including the cause of its current rapid rotation. We infer a relatively narrow range for the initial masses of the progenitor system: M_{10} = 2.3 +/- 0.2 M_sun and M_{20} = 1.7 +/- 0.2 M_sun, where M_{10} and M_{20} are the initial masses of the progenitors of the white dwarf and Regulus, respectively. In this scenario, the age of the Regulus system would exceed 1 Gyr. We also show that Regulus, with a current orbital period of 40 days, has an interesting future ahead of it. This includes (i) a common envelope phase, and, quite possibly, (ii) an sdB phase, followed by (iii) an AM CVn phase with orbital periods < 1 hr. Binary evolution calculations are presented in support of this scenario. We also discuss alternative possibilities, emphasizing the present uncertainties in binary evolution theory. Thus, this one particular star system illustrates many different aspects of binary stellar evolution.Hot subdwarf binaries - Masses and nature of their heavy compact companions
ArXiv 0901.1777 (2009)