Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
CMP
Credit: Jack Hobhouse

Peter Proks

Postdoctoral Research Assistant

Sub department

  • Condensed Matter Physics
peter.proks@physics.ox.ac.uk
Telephone: 72426
Clarendon Laboratory, room 071.4 & 071.7
  • About
  • Publications

Mutations at the same residue (R50) of Kir6.2 (KCNJ11) that cause neonatal diabetes produce different functional effects (vol 55, pg 1705, 2006)

DIABETES 56:3 (2007) 897-897

Authors:

K Shimomura, CAJ Girard, P Proks, J Nazim, JD Lippiat, F Cerutti, R Lorini, S Ellard, AT Hattersley, F Barbetti, FM Ashcroft
More details

Effect of peroxisome proliferator-activated receptor alpha ligand fenofibrate on K(v) channels in the insulin-secreting cell line HIT-T15.

Gen Physiol Biophys 25:4 (2006) 455-460

Authors:

K Shimomura, M Ikeda, Y Ariyama, P Proks, Y Shimomura, M Mori, S Matsumoto

Abstract:

Ligands for peroxisome proliferator-activated receptors alpha (PPARalpha) are clinically used for the treatment of patients with hyperlipidemia. As we have previously shown, a synthetic ligand of PPARalpha, fenofibrate, has a stimulatory effect on insulin secretion in clonal hamster insulinoma beta-cell line HIT-T15 cells. We have also demonstrated that fenofibrate directly inhibits ATP-sensitive potassium (K(ATP)) channels, an effect independent of PPARalpha. In this study, fenofibrate was shown to be able to reduce voltage-dependent K(+) (K(v)) channel currents in voltage-independent manner. Therefore, fenofibrate may modulate insulin secretion not only via inhibition of K(ATP) channels but also via reduction of the K(v) channel current.
More details
More details

Functional analysis of six Kir6.2 (KCNJ11) mutations causing neonatal diabetes.

Pflugers Arch 453:3 (2006) 323-332

Authors:

Christophe AJ Girard, Kenju Shimomura, Peter Proks, Nathan Absalom, Luis Castano, Guiomar Perez de Nanclares, Frances M Ashcroft

Abstract:

ATP-sensitive potassium (K(ATP)) channels, composed of pore-forming Kir6.2 and regulatory sulphonylurea receptor (SUR) subunits, play an essential role in insulin secretion from pancreatic beta cells. Binding of ATP to Kir6.2 inhibits, whereas interaction of Mg-nucleotides with SUR, activates the channel. Heterozygous activating mutations in Kir6.2 (KCNJ11) are a common cause of neonatal diabetes (ND). We assessed the functional effects of six novel Kir6.2 mutations associated with ND: H46Y, N48D, E227K, E229K, E292G, and V252A. K(ATP) channels were expressed in Xenopus oocytes and the heterozygous state was simulated by coexpression of wild-type and mutant Kir6.2 with SUR1 (the beta cell type of SUR). All mutations reduced the sensitivity of the K(ATP) channel to inhibition by MgATP, and enhanced whole-cell K(ATP) currents. Two mutations (E227K, E229K) also enhanced the intrinsic open probability of the channel, thereby indirectly reducing the channel ATP sensitivity. The other four mutations lie close to the predicted ATP-binding site and thus may affect ATP binding. In pancreatic beta cells, an increase in the K(ATP) current is expected to reduce insulin secretion and thereby cause diabetes. None of the mutations substantially affected the sensitivity of the channel to inhibition by the sulphonylurea tolbutamide, suggesting patients carrying these mutations may respond to these drugs.
More details from the publisher
More details

A heterozygous activating mutation in the sulphonylurea receptor SUR1 (ABCC8) causes neonatal diabetes.

Hum Mol Genet 15:11 (2006) 1793-1800

Authors:

Peter Proks, Amanda L Arnold, Jan Bruining, Christophe Girard, Sarah E Flanagan, Brian Larkin, Kevin Colclough, Andrew T Hattersley, Frances M Ashcroft, Sian Ellard

Abstract:

Neonatal diabetes is a genetically heterogeneous disorder with nine different genetic aetiologies reported to date. Heterozygous activating mutations in the KCNJ11 gene encoding Kir6.2, the pore-forming subunit of the ATP-sensitive potassium (K(ATP)) channel, are the most common cause of permanent neonatal diabetes. The sulphonylurea receptor (SUR) SUR1 serves as the regulatory subunit of the K(ATP) channel in pancreatic beta cells. We therefore hypothesized that activating mutations in the ABCC8 gene, which encodes SUR1, might cause neonatal diabetes. We identified a novel heterozygous mutation, F132L, in the ABCC8 gene of a patient with severe developmental delay, epilepsy and neonatal diabetes (DEND syndrome). This mutation had arisen de novo and was not present in 150 control chromosomes. Residue F132 shows evolutionary conservation across species and is located in the first set of transmembrane helices (TMD0) of SUR1, which is proposed to interact with Kir6.2. Functional studies of recombinant K(ATP) channels demonstrated that F132L markedly reduces the sensitivity of the K(ATP) channel to inhibition by MgATP and this increases the whole-cell K(ATP) current. The functional consequence of this ABCC8 mutation mirrors that of KCNJ11 mutations causing neonatal diabetes and provides new insights into the interaction of Kir6.2 and SUR1. As SUR1 is expressed in neurones as well as in beta cells, this mutation can account for both neonatal diabetes and the neurological phenotype. Our results demonstrate that SUR1 mutations constitute a new genetic aetiology for neonatal diabetes and that they act by reducing the K(ATP) channel's ATP sensitivity.
More details from the publisher
More details

Functional effects of mutations at F35 in the NH2-terminus of Kir6.2 (KCNJ11), causing neonatal diabetes, and response to sulfonylurea therapy.

Diabetes 55:6 (2006) 1731-1737

Authors:

Peter Proks, Christophe Girard, Halvor Baevre, Pål R Njølstad, Frances M Ashcroft

Abstract:

Heterozygous mutations in the human Kir6.2 gene (KCNJ11), the pore-forming subunit of the ATP-sensitive K(+) channel (K(ATP) channel), cause neonatal diabetes. To date, all mutations increase whole-cell K(ATP) channel currents by reducing channel inhibition by MgATP. Here, we provide functional characterization of two mutations (F35L and F35V) at residue F35 of Kir6.2, which lies within the NH(2)-terminus. We further show that the F35V patient can be successfully transferred from insulin to sulfonylurea therapy. The patient has been off insulin for 24 months and shows improved metabolic control (mean HbA(1c) 7.58 before and 6.18% after sulfonylurea treatment; P < 0.007). Wild-type and mutant Kir6.2 were heterologously coexpressed with SUR1 in Xenopus oocytes. Whole-cell K(ATP) channel currents through homomeric and heterozygous F35V and F35L channels were increased due to a reduced sensitivity to inhibition by MgATP. The mutation also increased the open probability (P(O)) of homomeric F35 mutant channels in the absence of ATP. These effects on P(O) and ATP sensitivity were abolished in the absence of SUR1. Our results suggest that mutations at F35 cause permanent neonatal diabetes by affecting K(ATP) channel gating and thereby, indirectly, ATP inhibition. Heterozygous F35V channels were markedly inhibited by the sulfonylurea tolbutamide, accounting for the efficacy of sulfonylurea therapy in the patient.
More details from the publisher
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 7
  • Page 8
  • Page 9
  • Page 10
  • Current page 11
  • Page 12
  • Page 13
  • Page 14
  • Page 15
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet