Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
CMP
Credit: Jack Hobhouse

Peter Proks

Postdoctoral Research Assistant

Sub department

  • Condensed Matter Physics
peter.proks@physics.ox.ac.uk
Telephone: 72426
Clarendon Laboratory, room 071.4 & 071.7
  • About
  • Publications

A gating mutation at the internal mouth of the Kir6.2 pore is associated with DEND syndrome.

EMBO Rep 6:5 (2005) 470-475

Authors:

Peter Proks, Christophe Girard, Shozeb Haider, Anna L Gloyn, Andrew T Hattersley, Mark SP Sansom, Frances M Ashcroft

Abstract:

Inwardly rectifying potassium (Kir) channels control cell membrane K+ fluxes and electrical signalling in diverse cell types. Heterozygous mutations in the human Kir6.2 gene (KCNJ11), the pore-forming subunit of the ATP-sensitive (K(ATP)) channel, cause permanent neonatal diabetes mellitus. However, the I296L mutation also results in developmental delay, muscle weakness and epilepsy. We investigated the functional effects of the I296L mutation by expressing wild-type or mutant Kir6.2/SUR1 channels in Xenopus oocytes. The mutation caused a marked increase in resting whole-cell K(ATP) currents by reducing channel inhibition by ATP, in both homomeric and simulated heterozygous states. Kinetic analysis showed that the mutation impaired ATP sensitivity indirectly, by stabilizing the open state of the channel and possibly also by means of an allosteric effect on ATP binding and/or transduction. The results implicate a new region in Kir-channel gating and suggest that disease severity is correlated with the extent of reduction in ATP sensitivity.
More details from the publisher
More details

A genetic and physiological study of impaired glucose homeostasis control in C57BL/6J mice.

Diabetologia 48:4 (2005) 675-686

Authors:

AA Toye, JD Lippiat, P Proks, K Shimomura, L Bentley, A Hugill, V Mijat, M Goldsworthy, L Moir, A Haynes, J Quarterman, HC Freeman, FM Ashcroft, RD Cox

Abstract:

AIMS/HYPOTHESIS: C57BL/6J mice exhibit impaired glucose tolerance. The aims of this study were to map the genetic loci underlying this phenotype, to further characterise the physiological defects and to identify candidate genes. METHODS: Glucose tolerance was measured in an intraperitoneal glucose tolerance test and genetic determinants mapped in an F2 intercross. Insulin sensitivity was measured by injecting insulin and following glucose disposal from the plasma. To measure beta cell function, insulin secretion and electrophysiological studies were carried out on isolated islets. Candidate genes were investigated by sequencing and quantitative RNA analysis. RESULTS: C57BL/6J mice showed normal insulin sensitivity and impaired insulin secretion. In beta cells, glucose did not stimulate a rise in intracellular calcium and its ability to close KATP channels was impaired. We identified three genetic loci responsible for the impaired glucose tolerance. Nicotinamide nucleotide transhydrogenase (Nnt) lies within one locus and is a nuclear-encoded mitochondrial proton pump. Expression of Nnt is more than sevenfold and fivefold lower respectively in C57BL/6J liver and islets. There is a missense mutation in exon 1 and a multi-exon deletion in the C57BL/6J gene. Glucokinase lies within the Gluchos2 locus and shows reduced enzyme activity in liver. CONCLUSIONS/INTERPRETATION: The C57BL/6J mouse strain exhibits plasma glucose intolerance reminiscent of human type 2 diabetes. Our data suggest a defect in beta cell glucose metabolism that results in reduced electrical activity and insulin secretion. We have identified three loci that are responsible for the inherited impaired plasma glucose tolerance and identified a novel candidate gene for contribution to glucose intolerance through reduced beta cell activity.
More details from the publisher
More details

Relapsing diabetes can result from moderately activating mutations in KCNJ11

Human Molecular Genetics 14:7 (2005) 925-934

Authors:

A Gloyn, Ashcroft FM, Gribble FM, Hattersley AT
More details from the publisher
More details
More details

Functional analysis of a structural model of the ATP-binding site of the KATP channel Kir6.2 subunit.

EMBO J 24:2 (2005) 229-239

Authors:

Jennifer F Antcliff, Shozeb Haider, Peter Proks, Mark SP Sansom, Frances M Ashcroft

Abstract:

ATP-sensitive potassium (KATP) channels couple cell metabolism to electrical activity by regulating K+ flux across the plasma membrane. Channel closure is mediated by ATP, which binds to the pore-forming subunit (Kir6.2). Here we use homology modelling and ligand docking to construct a model of the Kir6.2 tetramer and identify the ATP-binding site. The model is consistent with a large amount of functional data and was further tested by mutagenesis. Ligand binding occurs at the interface between two subunits. The phosphate tail of ATP interacts with R201 and K185 in the C-terminus of one subunit, and with R50 in the N-terminus of another; the N6 atom of the adenine ring interacts with E179 and R301 in the same subunit. Mutation of residues lining the binding pocket reduced ATP-dependent channel inhibition. The model also suggests that interactions between the C-terminus of one subunit and the 'slide helix' of the adjacent subunit may be involved in ATP-dependent gating. Consistent with a role in gating, mutations in the slide helix bias the intrinsic channel conformation towards the open state.
More details from the publisher
More details

Modelling of the ATP-inhibitory mechanism in ATP-sensitive potassium (KATP) channels: Insights from computer simulations of wild-type and mutant channels.

BIOPHYS J 88:1 (2005) 284A-284A

Authors:

LJ Shang, P Tammaro, SJ Tucker, P Proks
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 9
  • Page 10
  • Page 11
  • Page 12
  • Current page 13
  • Page 14
  • Page 15
  • Page 16
  • Page 17
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet