Functional effects of KCNJ11 mutations causing neonatal diabetes: enhanced activation by MgATP.
Hum Mol Genet 14:18 (2005) 2717-2726
Abstract:
Recent studies have shown that heterozygous mutations in KCNJ11, which encodes Kir6.2, the pore-forming subunit of the ATP-sensitive potassium (K(ATP)) channel, cause permanent neonatal diabetes either alone (R201C, R201H) or in association with developmental delay, muscle weakness and epilepsy (V59G,V59M). Functional analysis in the absence of Mg2+, to isolate the inhibitory effects of ATP on Kir6.2, showed that both types of mutation reduce channel inhibition by ATP. However, in pancreatic beta-cells, K(ATP) channel activity is governed by the balance between ATP inhibition via Kir6.2 and Mg-nucleotide stimulation mediated by an auxiliary subunit, the sulphonylurea receptor SUR1. We therefore studied the MgATP sensitivity of KCNJ11 mutant K(ATP) channels expressed in Xenopus oocytes. In contrast to wild-type channels, Mg2+ dramatically reduced the ATP sensitivity of heterozygous R201C, R201H, V59M and V59G channels. This effect was predominantly mediated via the nucleotide-binding domains of SUR1 and resulted from an enhanced stimulatory action of MgATP. Our results therefore demonstrate that KCNJ11 mutations increase the current magnitude of heterozygous K(ATP) channels in two ways: by increasing MgATP activation and by decreasing ATP inhibition. They further show that the fraction of unblocked K(ATP) current at physiological MgATP concentrations correlates with the severity of the clinical phenotype.Focus on Kir6.2: a key component of the ATP-sensitive potassium channel.
J Mol Cell Cardiol 38:6 (2005) 927-936
Abstract:
ATP-sensitive potassium (K(ATP)) channels are found in a wide variety of cell types where they couple cell metabolism to electrical activity. In glucose-sensing tissues, these channels respond to fluctuating changes in blood glucose concentration, but in other tissues they are activated only under ischemic conditions or in response to hormonal stimulation. Although K(ATP) channels in different tissues have different regulatory subunits, in almost all cases (except vascular smooth muscle) the pore-forming subunit is the inwardly rectifying K(+) channel Kir6.2. This article reviews recent studies of Kir6.2, focussing on the relation between channel structure and function, and on naturally occurring mutations in Kir6.2 that lead to human disease. New insights into the location of the ATP-binding site, the permeation pathway for K(+), and the gating of the pore provided by homology modelling are discussed in relation to functional studies. Gain-of-function mutations in Kir6.2 cause permanent neonatal diabetes mellitus (PNDM) by reducing the ATP sensitivity of the K(ATP) channel and increasing the K(ATP) current, which is predicted to inhibit beta-cell electrical activity and insulin secretion. Mutations at specific residues, that cause a greater decrease in ATP sensitivity, are associated with additional neurological symptoms. The molecular mechanism underlying the differences in ATP sensitivity produced by these two classes of mutations is discussed. We speculate on how some mutations lead to neurological disease and why no obvious cardiac symptoms are observed. We also consider the implications of these studies for type-2 diabetes.A gating mutation at the internal mouth of the Kir6.2 pore is associated with DEND syndrome.
EMBO Rep 6:5 (2005) 470-475
Abstract:
Inwardly rectifying potassium (Kir) channels control cell membrane K+ fluxes and electrical signalling in diverse cell types. Heterozygous mutations in the human Kir6.2 gene (KCNJ11), the pore-forming subunit of the ATP-sensitive (K(ATP)) channel, cause permanent neonatal diabetes mellitus. However, the I296L mutation also results in developmental delay, muscle weakness and epilepsy. We investigated the functional effects of the I296L mutation by expressing wild-type or mutant Kir6.2/SUR1 channels in Xenopus oocytes. The mutation caused a marked increase in resting whole-cell K(ATP) currents by reducing channel inhibition by ATP, in both homomeric and simulated heterozygous states. Kinetic analysis showed that the mutation impaired ATP sensitivity indirectly, by stabilizing the open state of the channel and possibly also by means of an allosteric effect on ATP binding and/or transduction. The results implicate a new region in Kir-channel gating and suggest that disease severity is correlated with the extent of reduction in ATP sensitivity.A genetic and physiological study of impaired glucose homeostasis control in C57BL/6J mice.
Diabetologia 48:4 (2005) 675-686
Abstract:
AIMS/HYPOTHESIS: C57BL/6J mice exhibit impaired glucose tolerance. The aims of this study were to map the genetic loci underlying this phenotype, to further characterise the physiological defects and to identify candidate genes. METHODS: Glucose tolerance was measured in an intraperitoneal glucose tolerance test and genetic determinants mapped in an F2 intercross. Insulin sensitivity was measured by injecting insulin and following glucose disposal from the plasma. To measure beta cell function, insulin secretion and electrophysiological studies were carried out on isolated islets. Candidate genes were investigated by sequencing and quantitative RNA analysis. RESULTS: C57BL/6J mice showed normal insulin sensitivity and impaired insulin secretion. In beta cells, glucose did not stimulate a rise in intracellular calcium and its ability to close KATP channels was impaired. We identified three genetic loci responsible for the impaired glucose tolerance. Nicotinamide nucleotide transhydrogenase (Nnt) lies within one locus and is a nuclear-encoded mitochondrial proton pump. Expression of Nnt is more than sevenfold and fivefold lower respectively in C57BL/6J liver and islets. There is a missense mutation in exon 1 and a multi-exon deletion in the C57BL/6J gene. Glucokinase lies within the Gluchos2 locus and shows reduced enzyme activity in liver. CONCLUSIONS/INTERPRETATION: The C57BL/6J mouse strain exhibits plasma glucose intolerance reminiscent of human type 2 diabetes. Our data suggest a defect in beta cell glucose metabolism that results in reduced electrical activity and insulin secretion. We have identified three loci that are responsible for the inherited impaired plasma glucose tolerance and identified a novel candidate gene for contribution to glucose intolerance through reduced beta cell activity.Relapsing diabetes can result from moderately activating mutations in KCNJ11
Human Molecular Genetics 14:7 (2005) 925-934