Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
CMP
Credit: Jack Hobhouse

Peter Proks

Postdoctoral Research Assistant

Sub department

  • Condensed Matter Physics
peter.proks@physics.ox.ac.uk
Telephone: 72426
Clarendon Laboratory, room 071.4 & 071.7
  • About
  • Publications

Activating mutations in the ATP-sensitive potassium channel subunit Kir6.2 gene are associated with permanent neonatal diabetes.

New England Journal of Medicine 350:18 (2004) 1838-1849

Authors:

A Gloyn, Ashcroft FM, Hattersley AT, Njolstad PR
More details from the publisher
More details
More details

Erratum: Characterisation of new KATP-channel mutations associated with congenital hyperinsulinism in the Finnish population (Diabetologia (2003) 46 (195-202))

Diabetologia 47:1 (2004) 155

Authors:

F Reimann, H Huopio, M Dabrowski, P Proks, FM Gribble, M Laakso, T Otonkoski, FM Ashcroft
More details from the publisher

Characterisation of new KATP-channel mutations associated with congenital hyperinsulinism in the Finnish population (vol 46, pg 241, 2003)

DIABETOLOGIA 47:1 (2004) 155-155

Authors:

F Reimann, H Huopio, M Dabrowski, P Proks, FM Gribble, M Laakso, T Otonkoski, FM Ashcroft
More details from the publisher

Filter flexibility in a mammalian K channel: models and simulations of Kir6.2 mutants.

Biophys J 84:4 (2003) 2345-2356

Authors:

Charlotte E Capener, Peter Proks, Frances M Ashcroft, Mark SP Sansom

Abstract:

The single-channel conductance varies significantly between different members of the inward rectifier (Kir) family of potassium channels. Mutations at three sites in Kir6.2 have been shown to produce channels with reduced single-channel conductance, the largest reduction (to 40% of wild-type) being for V127T. We have used homology modeling (based on a KcsA template) combined with molecular dynamics simulations in a phosphatidycholine bilayer to explore whether changes in structural dynamics of the filter were induced by three such mutations: V127T, M137C, and G135F. Overall, 12 simulations of Kir6.2 models, corresponding to a total simulation time of 27 ns, have been performed. In these simulations we focused on distortions of the selectivity filter, and on the presence/absence of water molecules lying behind the filter, which form interactions with the filter and the remainder of the protein. Relative to the wild-type simulation, the V127T mutant showed significant distortion of the filter such that approximately 50% of the simulation time was spent in a closed conformation. While in this conformation, translocation of K(+) ions between sites S1 and S2 was blocked. The distorted filter conformation resembles that of the bacterial channel KcsA when crystallized in the presence of a low [K(+)]. This suggests filter distortion may be a possible general model for determining the conductance of K channels.
More details from the publisher
More details

Characterisation of new KATP-channel mutations associated with congenital hyperinsulinism in the Finnish population.

Diabetologia 46:2 (2003) 241-249

Authors:

F Reimann, H Huopio, M Dabrowski, P Proks, FM Gribble, M Laakso, T Otonkoski, FM Ashcroft

Abstract:

AIMS/HYPOTHESIS: ATP-sensitive potassium (K(ATP)) channels are crucial for the regulation of insulin secretion from pancreatic beta cells and mutations in either the Kir6.2 or SUR1 subunit of this channel can cause congenital hyperinsulinism (CHI). The aim of this study was to analyse the functional consequences of four CHI mutations (A1457T, V1550D and L1551V in SUR1, and K67N in Kir6.2) recently identified in the Finnish population. METHODS: Wild type or mutant Kir6.2 and SUR1 subunits were coexpressed in Xenopus oocytes. The functional properties of the channels were examined by measuring currents in intact oocytes or giant inside-out membrane patches. Surface expression was measured by enzyme-linked immunosorbance assay, using HA-epitope-tagged subunits. RESULTS: Two mutations (A1457T and V1550D) prevented trafficking of the channel to the plasma membrane. The L1551V mutation reduced surface expression 40-fold, and caused loss of MgADP and diazoxide activation. Both these factors will contribute to the lack of K(ATP) current activation observed in response to metabolic inhibition in intact oocytes. The L1551V mutation also increased the channel open probability, thereby producing a reduction in ATP-sensitivity (from 10 micro mol/l to 120 micro mol/l). The fourth mutation (K67N mutation in Kir6.2) did not affect surface expression nor alter the properties of K(ATP) channels in excised patches, but resulted in a reduced K(ATP) current amplitude in intact cells on metabolic inhibition, through an unidentified mechanism. CONCLUSION/INTERPRETATION: The four CHI mutations disrupted K(ATP) channel activity by different mechanisms. Our results are discussed in relation to the CHI phenotype observed in patients with these mutations.
More details from the publisher
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 11
  • Page 12
  • Page 13
  • Page 14
  • Current page 15
  • Page 16
  • Page 17
  • Page 18
  • Page 19
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet