Structure-function studies of the fast gating kinetics of the cloned ATP-sensitive potassium channel, Kir6.2/SUR1
JOURNAL OF PHYSIOLOGY-LONDON 533 (2001) 113P-114P
Two types of gating in inward rectifiers:: The case of the KATP channel.
BIOPHYSICAL JOURNAL 80:1 (2001) 512A-512A
Direct photoaffinity labeling of Kir6.2 by [gamma-(32)P]ATP-[gamma]4-azidoanilide.
Biochem Biophys Res Commun 272:2 (2000) 316-319
Abstract:
ATP-sensitive potassium (K(ATP)) channels are under complex regulation by intracellular ATP and ADP. The potentiatory effect of MgADP is conferred by the sulfonylurea receptor subunit of the channel, SUR, whereas the inhibitory effect of ATP appears to be mediated via the pore-forming subunit, Kir6.2. We have previously reported that Kir6.2 can be directly labeled by 8-azido-[gamma-(32)P]ATP. However, the binding affinity of 8-azido-ATP to Kir6.2 was low probably due to modification at 8' position of adenine. Here we demonstrate that Kir6.2 can be directly photoaffinity labeled with higher affinity by [gamma-(32)P]ATP-[gamma]4-azidoanilide ([gamma-(32)P]ATP-AA), containing an unmodified adenine ring. Photoaffinity labeling of Kir6.2 by [gamma-(32)P]ATP-AA is not affected by the presence of Mg(2+), consistent with Mg(2+)-independent ATP inhibition of K(ATP) channels. Interestingly, SUR1, which can be strongly and specifically photoaffinity labeled by 8-azido-ATP, was not photoaffinity labeled by ATP-AA. These results identify key differences in the structure of the nucleotide binding sites on SUR1 and Kir6.2.Inhibition of cloned KATP channels by stilbene disulphonates
JOURNAL OF PHYSIOLOGY-LONDON 527 (2000) 114P-114P
Quantal analysis of 5‐hydroxytryptamine release from mouse pancreatic β‐cells
The Journal of Physiology Wiley 521:3 (1999) 651-664