Inhibition of the ATP-sensitive potassium channel from mouse pancreatic beta-cells by surfactants.
British journal of pharmacology 124:3 (1998) 529-539
Abstract:
1. We have used patch-clamp methods to study the effects of the detergents, Cremophor, Tween 80 and Triton X100 on the K(ATP) channel in the pancreatic beta-cell from mouse. 2. All three detergents blocked K(ATP) channel activity with the following order of potency: Tween 80 (Ki< approximately 83 nM)>Triton X100 (Ki=350 nM)>Cremophor. In all cases the block was poorly reversible. 3. Single-channel studies suggested that at low doses, the detergents act as slow blockers of the K(ATP) channel. 4. Unlike the block produced by tolbutamide, that produced by detergent was not affected by intracellular Mg2+-nucleotide, diazoxide or trypsin treatment, nor did it involve an acceleration of rundown or increase in ATP sensitivity of the chanel. 5. The detergents could block the pore-forming subunit, Kir6.2deltaC26, which can be expressed independently of SUR1 (the regulatory subunit of the K(ATP) channel). These data suggest that the detergents act on Kir6.2 and not SUR1. 6. The detergents had no effect on another member of the inward rectifier family: Kir1.1a (ROMK1). 7. Voltage-dependent K-currents in the beta-cell were reversibly blocked by the detergents with a far lower potency than that found for the K(ATP) channel. 8. Like other insulin secretagogues that act by blocking the K(ATP) channel, Cremophor elevated intracellular Ca2+ in single beta-cells to levels that would be expected to elicit insulin secretion. 9. Given the role of the K(ATP) channel in many physiological processes, we conclude that plasma borne detergent may have pharmacological actions mediated through blockage of the K(ATP) channel.Molecular determinants of KATP channel inhibition by ATP.
The EMBO journal 17:12 (1998) 3290-3296
Abstract:
ATP-sensitive K+ (KATP) channels are both inhibited and activated by intracellular nucleotides, such as ATP and ADP. The inhibitory effects of nucleotides are mediated via the pore-forming subunit, Kir6.2, whereas the potentiatory effects are conferred by the sulfonylurea receptor subunit, SUR. The stimulatory action of Mg-nucleotides complicates analysis of nucleotide inhibition of Kir6. 2/SUR1 channels. We therefore used a truncated isoform of Kir6.2, that expresses ATP-sensitive channels in the absence of SUR1, to explore the mechanism of nucleotide inhibition. We found that Kir6.2 is highly selective for ATP, and that both the adenine moiety and the beta-phosphate contribute to specificity. We also identified several mutations that significantly reduce ATP inhibition. These are located in two distinct regions of Kir6.2: the N-terminus preceding, and the C-terminus immediately following, the transmembrane domains. Some mutations in the C-terminus also markedly increased the channel open probability, which may account for the decrease in apparent ATP sensitivity. Other mutations did not affect the single-channel kinetics, and may reduce ATP inhibition by interfering with ATP binding and/or the link between ATP binding and pore closure. Our results also implicate the proximal C-terminus in KATP channel gating.Electrophysiological and metabolic characterization of single beta-cells and islets from diabetic GK rats.
Diabetes 47:1 (1998) 73-81
Abstract:
We have used the whole-cell recording technique to determine whether ATP-sensitive potassium (K[ATP]) currents, voltage-dependent Ca2+ currents, and exocytosis are different in single beta-cells from pancreatic islets of Goto-Kakizaki (GK) rats, a novel model of NIDDM, and normal rats. In addition, we have also measured the insulin secretory responses, ATP content, and the rate of glucose metabolism in intact islets. Although the glucose sensitivity of the K(ATP) current was similar between GK rats and controls, in the absence of glucose, K(ATP) current density was larger in GK rats, which resulted in a more hyperpolarized membrane potential. Whole-cell Ca2+ currents were similar. By monitoring the cell capacitance with a fixed intracellular solution, no difference was detected in the exocytotic responses of beta-cells from normal and GK rats. In islets from GK rats, the rates of glucose utilization ([3H]H2O production from 5-[3H]glucose) and oxidation ([14C]CO2 production from U-[14C]glucose) were not significantly different from controls. Insulin secretion, however, was impaired (by 50%), and this was paralleled by a smaller increase in ATP content in response to stimulation by 10 mmol/l glucose in islets from GK rats when compared with controls. Under conditions in which K(ATP) channels were held open and the effects of glucose were independent of membrane potential, insulin release was still significantly lower in GK rat islets than in controls. These findings suggest that the impaired insulin secretion in islets from GK rats does not simply result from a failure to close K(ATP) channels, nor does it result from an impairment in calcium secretion coupling.Phentolamine block of KATP channels is mediated by Kir6.2.
Proceedings of the National Academy of Sciences of the United States of America 94:21 (1997) 11716-11720
Abstract:
The ATP-sensitive K+-channel (KATP channel) plays a key role in insulin secretion from pancreatic beta cells. It is closed both by glucose metabolism and the sulfonylurea drugs that are used in the treatment of noninsulin-dependent diabetes mellitus, thereby initiating a membrane depolarization that activates voltage-dependent Ca2+ entry and insulin release. The beta cell KATP channel is a complex of two proteins: Kir6.2 and SUR1. The former is an ATP-sensitive K+-selective pore, whereas SUR1 is a channel regulator that endows Kir6.2 with sensitivity to sulfonylureas. A number of drugs containing an imidazoline moiety, such as phentolamine, also act as potent stimulators of insulin secretion, but their mechanism of action is unknown. We have used a truncated form of Kir6.2, which expresses independently of SUR1, to show that phentolamine does not inhibit KATP channels by interacting with SUR1. Instead, our results argue that phentolamine may interact directly with Kir6.2 to produce a voltage-independent reduction in channel activity. The single-channel conductance is unaffected. Although the ATP molecule also contains an imidazoline group, the site at which phentolamine blocks is not identical to the ATP-inhibitory site, because phentolamine block of an ATP-insensitive mutant (K185Q) is normal. KATP channels also are found in the heart where they are involved in the response to cardiac ischemia: they also are blocked by phentolamine. Our results suggest that this may be because Kir6.2, which is expressed in the heart, forms the pore of the cardiac KATP channel.Rapid ATP-dependent priming of secretory granules precedes Ca(2+)-induced exocytosis in mouse pancreatic B-cells.
The Journal of physiology 503 ( Pt 2) (1997) 399-412