Cloning and functional expression of the cDNA encoding an inwardly-rectifying potassium channel expressed in pancreatic beta-cells and in the brain.
FEBS letters 367:1 (1995) 61-66
Abstract:
A cDNA clone encoding an inwardly-rectifying K-channel (BIR1) was isolated from insulinoma cells. The predicted amino acid sequence shares 72% identity with the cardiac ATP-sensitive K-channel rcKATP (KATP-1;[6]). The mRNA is expressed in the brain and insulinoma cells. Heterologous expression in Xenopus oocytes produced currents which were K(+)-selective, time-independent and showed inward rectification. The currents were blocked by external barium and caesium, but insensitive to tolbutamide and diazoxide. In inside-out patches, channel activity was not blocked by 1 mM internal ATP. The sequence homology with KATP-1 suggests that BIR1 is a subunit of a brain and beta-cell KATP channel. However, pharmacological differences and the lack of ATP-sensitivity, suggest that if, this is the case, heterologous subunits must exert strong modulatory influences on the native channel.The KATP and KV channels are distinct entities: a reply to Edwards and Weston
Cardiovascular Research 28:6 (1994) 738-740
The KATP and Kv channels are distinct entities: a reply to Edwards and Weston.
Cardiovascular research 28:6 (1994) 738-740
Effects of intracellular pH on ATP-sensitive K+ channels in mouse pancreatic beta-cells.
The Journal of physiology 475:1 (1994) 33-44
Abstract:
1. The effects of intracellular pH (pHi) on the ATP-sensitive K+ channel (K+ATP channel) from mouse pancreatic beta-cells were examined in inside-out patches exposed to symmetrical 140 mM K+ solutions. 2. The relationship between channel activity and pHi was described by the Hill equation with half-maximal inhibition (Ki) at pHi 6.25 and a Hill coefficient of 3.7. 3. Following exposure to pHi < 6.8, channel activity did not recover to its original level. Subsequent application of trypsin to the intracellular membrane surface restored channel activity to its initial level or above. 4. At -60 mV the relationship between pHi and the single-channel current amplitude was described by a modified Hill equation with a Hill coefficient of 2.1, half-maximal inhibition at pHi 6.48 and a maximum inhibition of 18.5%. 5. A decrease in pHi reduced the extent of channel inhibition by ATP: Ki was 18 microM at pH 7.2 and 33 microM at pH 6.4. The Hill coefficient was also reduced, being 1.65 at pH 7.2 and 1.17 at pH 6.4. 6. When channel activity was plotted as a function of ATP4- (rather than total ATP) there was no effect of pHi on the relationship. This suggests that ATP4- is the inhibitory ion species and that the effects of reducing pHi are due to the lowered concentration of ATP4-. 7. Changes in external pH had little effect on either single-channel or whole-cell K+ATP currents. 8. The effects of pHi do not support a role for H+ in linking glucose metabolism to K+ATP channel inhibition in pancreatic beta-cells.Stimulus-secretion coupling in pancreatic beta cells.
Journal of cellular biochemistry 55 Suppl (1994) 54-65