Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Image of Jupiter's Great Red Spot from Voyager 1

Image of Jupiter's Great Red Spot, obtained during the fly-by of Jupiter by NASA's Voyager 1 spacecraft in 1979.

Credit: NASA/JPL

Prof. Peter Read

Emeritus/researcher

Research theme

  • Climate physics
  • Exoplanets and planetary physics

Sub department

  • Atmospheric, Oceanic and Planetary Physics

Research groups

  • Geophysical and Astrophysical Fluid Dynamics
  • Planetary Climate Dynamics
Peter.Read@physics.ox.ac.uk
Telephone: 01865 (2)72082
Atmospheric Physics Clarendon Laboratory, room 210
  • About
  • Publications

An evaluation of Eulerian and semi-Lagrangian advection schemes in simulations of rotating, stratified flows in the laboratory. Part I: Axisymmetric flow

MONTHLY WEATHER REVIEW 128:8 (2000) 2835-2852

Authors:

PL Read, NPJ Thomas, SH Risch
More details from the publisher

Generation of inertia-gravity waves in a baroclinically unstable fluid

QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY 126:570 (2000) 3233-3254

Authors:

AF Lovegrove, PL Read, CJ Richards
More details from the publisher

Vortices in a rotating shear layer

Proceedings of the 1999 3rd ASME/JSME Joint Fluids Engineering Conference, FEDSM'99, San Francisco, California, USA, 18-23 July 1999 (CD-ROM) (1999) 1

Authors:

WG Fruh, PL Read

Abstract:

Results from an experimental study of vortices in a rotating shear layer will be presented. Through the rotation of circular sections in the base and lid of a circular tank, a vertical shear layer is created in the fluid interior. In supercritical conditions, the flow is in the form of a regular string of two-dimensional, vertically uniform, vortices along the now wavy shear layer. Once established, the vortices are very stable flow structures that persist as long as the shear is maintained. Under most conditions the vortices were steady, but quasi-periodic and chaotic flows were also observed. The data from the experiments are in the form of maps of the instantaneous horizontal velocity field obtained by a particle tracking technique similar to Particle Image Velocimetry (PIV). The data would be useful validate both the spatial and temporal behaviour of numerical models.

POD analysis of baroclinic wave flows in the thermally-driven, rotating annulus experiment

Physics and Chemistry of the Earth, Part B: Hydrology, Oceans and Atmosphere 24:5 (1999) 449-453

Authors:

AV Stephen, IM Moroz, PL Read

Abstract:

The Proper Orthogonal Decomposition (POD) is a procedure to compute an orthogonal basis from a time series of spatial fields. This basis is optimal among all linear decompositions, in the sense that for a given number of modes, the projection of the original signal onto the subspace will contain the most variance on average. This algorithm is applied to streamfunction fields derived from measurements of the flow in the thermally forced rotating annulus experiment. Results of this analysis are presented, and a method to derive low-dimensional models of the flow by projecting the equations of motion onto these empirical eigenfunctions is discussed.
More details from the publisher
More details

A climate database for Mars

JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS 104:E10 (1999) 24177-24194

Authors:

SR Lewis, M Collins, PL Read, F Forget, F Hourdin, R Fournier, C Hourdin, O Talagrand, JP Huot
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 41
  • Page 42
  • Page 43
  • Page 44
  • Current page 45
  • Page 46
  • Page 47
  • Page 48
  • Page 49
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet