Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Image of Jupiter's Great Red Spot from Voyager 1

Image of Jupiter's Great Red Spot, obtained during the fly-by of Jupiter by NASA's Voyager 1 spacecraft in 1979.

Credit: NASA/JPL

Prof. Peter Read

Emeritus/researcher

Research theme

  • Climate physics
  • Exoplanets and planetary physics

Sub department

  • Atmospheric, Oceanic and Planetary Physics

Research groups

  • Geophysical and Astrophysical Fluid Dynamics
  • Planetary Climate Dynamics
Peter.Read@physics.ox.ac.uk
Telephone: 01865 (2)72082
Atmospheric Physics Clarendon Laboratory, room 210
  • About
  • Publications

Energy Exchanges in Saturn's Polar Regions From Cassini Observations: Eddy-Zonal Flow Interactions

JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS 127:5 (2022) ARTN e2021JE006973

Authors:

Peter L Read, Arrate Antunano, Simon Cabanes, Greg Colyer, Teresa del Rio Gaztelurrutia, Agustin Sanchez-Lavega

Abstract:

Saturn's polar regions (polewards of ∼63° planetocentric latitude) are strongly dynamically active with zonal jets, polar cyclones and the intriguing north polar hexagon (NPH) wave. Here we analyze measurements of horizontal winds, previously obtained from Cassini images by Antuñano et al. (2015), https://doi.org/10.1002/2014je004709, to determine the spatial and spectral exchanges of kinetic energy (KE) between zonal mean zonal jets and nonaxisymmetric eddies in Saturn's polar regions. Eddies of most resolved scales generally feed KE into the eastward and westward zonal mean jets at rates between 4.3 × 10−5 and 1.4 × 10−4 W kg−1. In particular, the north polar jet (at 76°N) was being energized at a rate of ∼10−4 W kg−1, dominated by the contribution due to the zonal wavenumber m = 6 NPH wave itself. This implies that the hexagon was not being driven at this time through a barotropic instability of the north polar jet, but may suggest a significant role for baroclinic instabilities, convection or other internal energy sources for this feature. The south polar zonal mean jet KE was also being sustained by eddies in that latitude band across a wide range of m. In contrast, results indicate that the north polar vortex may have been weakly barotropically unstable at this time with eddies of low m gaining KE at the expense of the axisymmetric cyclone. However, the southern axisymmetric polar cyclone was gaining KE from non-axisymmetric components at this time, including m = 2 and its harmonics, as the elliptical distortion of the vortex may have been decaying.
More details from the publisher
Details from ORA
More details
More details

Assimilation of both column‐ and layer‐integrated dust opacity observations in the Martian atmosphere

Earth and Space Science Wiley 8:12 (2021) e2021EA001869

Authors:

Tao Ruan, Rmb Young, Sr Lewis, L Montabone, A Valeanu, Pl Read

Abstract:

A new dust data assimilation scheme has been developed for the UK version of the Laboratoire de Météorologie Dynamique (LMD) Martian General Circulation Model. The Analysis Correction scheme (adapted from the UK Met Office) is applied with active dust lifting and transport to analyze measurements of temperature, and both column-integrated dust optical depth (CIDO), τref (rescaled to a reference level), and layer-integrated dust opacity (LIDO). The results are shown to converge to the assimilated observations, but assimilating either of the dust observation types separately does not produce the best analysis. The most effective dust assimilation is found to require both CIDO (from Mars Odyssey/THEMIS) and LIDO observations, especially for Mars Climate Sounder data that does not access levels close to the surface. The resulting full reanalysis improves the agreement with both in-sample assimilated CIDO and LIDO data and independent observations from outside the assimilated dataset. It is thus able to capture previously elusive details of the dust vertical distribution, including elevated detached dust layers that have not been captured in previous reanalyses. Verification of this reanalysis has been carried out under both clear and dusty atmospheric conditions during Mars Years 28 and 29, using both in-sample and out of sample observations from orbital remote sensing and contemporaneous surface measurements of dust opacity from the Spirit and Opportunity landers. The reanalysis was also compared with a recent version of the Mars Climate Database (MCD v5), demonstrating generally good agreement though with some systematic differences in both time mean fields and day-to-day variability.

More details from the publisher
Details from ORA
More details
More details

Baroclinic and barotropic instabilities in planetary atmospheres: energetics, equilibration and adjustment

Nonlinear Processes in Geophysics Copernicus Publications 27:1 (2020) 147-173

Authors:

Peter Read, Daniel Kennedy, Neil Lewis, Helene Scolan, Fachreddin Tabataba-Vakili, Yixiong Wang, Susie Wright, Roland Young

Abstract:

Baroclinic and barotropic instabilities are well known as the mechanisms responsible for the production of the dominant energy-containing eddies in the atmospheres of Earth and several other planets, as well as Earth's oceans. Here we consider insights provided by both linear and nonlinear instability theories into the conditions under which such instabilities may occur, with reference to forced and dissipative flows obtainable in the laboratory, in simplified numerical atmospheric circulation models and in the planets of our solar system. The equilibration of such instabilities is also of great importance in understanding the structure and energetics of the observable circulation of atmospheres and oceans. Various ideas have been proposed concerning the ways in which baroclinic and barotropic instabilities grow to a large amplitude and saturate whilst also modifying their background flow and environment. This remains an area that continues to challenge theoreticians and observers, though some progress has been made. The notion that such instabilities may act under some conditions to adjust the background flow towards a critical state is explored here in the context of both laboratory systems and planetary atmospheres. Evidence for such adjustment processes is found relating to baroclinic instabilities under a range of conditions where the efficiency of eddy and zonal-mean heat transport may mutually compensate in maintaining a nearly invariant thermal structure in the zonal mean. In other systems, barotropic instabilities may efficiently mix potential vorticity to result in a flow configuration that is found to approach a marginally unstable state with respect to Arnol'd's second stability theorem. We discuss the implications of these findings and identify some outstanding open questions.
More details from the publisher
Details from ORA
More details

Simulating Jupiter's weather layer. Part II: Passive ammonia and water cycles

Icarus Elsevier 326 (2018) 253-268

Authors:

Roland Young, Peter Read, Yixiong Wang

Abstract:

We examine the ammonia and water cycles in Jupiter's upper troposphere and lower stratosphere during spin-up of a multiple zonal jet circulation using the Oxford Jupiter GCM. Jupiter's atmosphere is simulated at 512 x 256 horizontal resolution with 33 vertical levels between 0.01 and 18 bar, putting the lowest level well below the expected water cloud base. Simulations with and without a 5.7 W/m2 interior heat source were run for 130000-150000d to allow the deep atmosphere to come into radiative-convective-dynamical equilibrium, with variants on the interior heating case including varying the initial tracer distribution, particle condensate diameter, and cloud process timescales. The cloud scheme includes simple representations of the ammonia and water cycles. Ammonia vapour changes phase to ice, and reacts with hydrogen sulphide to produce ammonium hydrosulphide. Water changes phases between vapour, liquid, and ice depending on local environmental conditions, and all condensates sediment at their respective Stokes velocities. With interior heating, clouds of ammonia ice, ammonium hydrosulphide ice, and water ice form with cloud bases around 0.4 bar, 1.5 bar, and 3 bar respectively. Without interior heating the ammonia cloud base forms in the same way, but the ammonium hydrosulphide and water clouds sediment to the bottom of the domain. The liquid water cloud is either absent or extremely sparse. Zonal structures form that correlate regions of strong latitudinal shear with regions of constant condensate concentration, implying that jets act as barriers to the mixing. Regions with locally high and low cloud concentrations also correlated with regions of upwelling and downwelling, respectively. Shortly after initialisation, the ammonia vapour distribution up to the cloud base resembles the enhanced concentration seen in Juno observations, due to strong meridional mean circulation at the equator. The resemblance decays rapidly over time, but suggests that at least some of the relevant physics is captured by the model. The comparison should improve with additional microphysics and better representation of the deep ammonia reservoir.
More details from the publisher
Details from ORA
More details

Forward and inverse kinetic energy cascades in Jupiter’s turbulent weather layer

Nature Physics Nature Publishing Group 13 (2017) 1135-1140

Authors:

Roland MB Young, Peter L Read

Abstract:

Jupiter’s turbulent weather layer contains phenomena of many different sizes, from local storms up to the Great Red Spot and banded jets. The global circulation is driven by complex interactions with (as yet uncertain) small scale processes. We have calculated structure functions and kinetic energy spectral fluxes from Cassini observations over a wide range of length scales in Jupiter’s atmosphere. We found evidence for an inverse cascade of kinetic energy from length scales comparable with the first baroclinic Rossby deformation radius to the global jet scale, but also a forward cascade of kinetic energy from the deformation radius to smaller scales. The latter disagrees with the traditional picture of Jupiter’s atmospheric dynamics, but has some similarities with mesoscale phenomena in the Earth’s atmosphere and oceans. We conclude that the inverse cascade driving Jupiter’s jets may have a dominant energy source at scales close to the deformation radius, such as baroclinic instability.
More details from the publisher
Details from ORA
More details
More details

Pagination

  • Current page 1
  • Page 2
  • Page 3
  • Page 4
  • Page 5
  • Page 6
  • Page 7
  • Page 8
  • Page 9
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet