Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Image of Jupiter's Great Red Spot from Voyager 1

Image of Jupiter's Great Red Spot, obtained during the fly-by of Jupiter by NASA's Voyager 1 spacecraft in 1979.

Credit: NASA/JPL

Prof. Peter Read

Emeritus/researcher

Research theme

  • Climate physics
  • Exoplanets and planetary physics

Sub department

  • Atmospheric, Oceanic and Planetary Physics

Research groups

  • Geophysical and Astrophysical Fluid Dynamics
  • Planetary Climate Dynamics
Peter.Read@physics.ox.ac.uk
Telephone: 01865 (2)72082
Atmospheric Physics Clarendon Laboratory, room 210
  • About
  • Publications

A laboratory study of baroclinic waves and turbulence in an internally heated rotating fluid annulus with sloping endwalls

JOURNAL OF FLUID MECHANICS 339 (1997) 173-198

Authors:

ME Bastin, PL Read
More details from the publisher

Data assimilation with a Martian atmospheric GCM: An example using thermal data

ADV SPACE RES 19:8 (1997) 1267-1270

Authors:

SR Lewis, M Collins, PL Read

Abstract:

Data assimilation is a technique for the analysis of atmospheric observations which combines current information with prior knowledge from previous observations, summarized and forecast in time via the use of a numerical model. A sequential data assimilation scheme has been implemented with a full general circulation model (GCM) of the martian atmosphere for the first time, and has been adapted for the types of atmospheric data which might be expected in the near future, e.g. remote-sensed temperature profiles from a polar orbiter mission such as Mars Surveyor '96 and '98. Tests demonstrate the performance of the scheme using artificial data generated from independent model experiments. (C) 1997 COSPAR. Published by Elsevier Science Ltd.
More details from the publisher

Gravity wave drag in a global circulation model of the Martian atmosphere: Parameterisation and validation

ADV SPACE RES 19:8 (1997) 1245-1254

Authors:

M Collins, SR Lewis, PL Read

Abstract:

The effect of orographically generated breaking gravity waves is parametrised in a global circulation model of the Martian atmosphere using schemes adapted from terrestrial models. The schemes are 'tuned' by comparing model integrations with and without gravity wave drag with temperatures derived from the Mariner 9 IRIS instrument. Without gravity wave drag the global circulation model temperature field has excessively cold upper level polar regions. Gravity wave drag can correct for such cold temperatures by warming the atmosphere adiabatically via a dynamically induced circulation. The model climatology is significantly improved in the polar regions with the introduction of the parametrisation. (C) 1997 COSPAR. Published by Elsevier Science Ltd.
More details from the publisher

Laboratory and numerical studies of baroclinic waves in an internally heated rotating fluid annulus: A case of wave/vortex duality?

JOURNAL OF FLUID MECHANICS 337 (1997) 155-191

Authors:

PL Read, SR Lewis, R Hide
More details from the publisher

Mode selection, wave breaking and parametric sensitivity in the quasi-biennial oscillation

QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY 123:543 (1997) 2041-2068

Authors:

X Li, PL Read, DG Andrews
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 44
  • Page 45
  • Page 46
  • Page 47
  • Current page 48
  • Page 49
  • Page 50
  • Page 51
  • Page 52
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet