Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Black Hole

Lensing of space time around a black hole. At Oxford we study black holes observationally and theoretically on all size and time scales - it is some of our core work.

Credit: ALAIN RIAZUELO, IAP/UPMC/CNRS. CLICK HERE TO VIEW MORE IMAGES.

Dr Lauren Rhodes

TSI Postdoctoral Research Fellow

Research theme

  • Astronomy and astrophysics

Sub department

  • Astrophysics

Research groups

  • MeerKAT
  • Pulsars, transients and relativistic astrophysics
  • The Square Kilometre Array (SKA)
  • Gamma-ray astronomy
lauren.rhodes@physics.ox.ac.uk
laurenrhodes.github.io
  • About
  • Publications

A multi-wavelength view of the outflowing short-period X-ray binary UW CrB

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) (2025) staf1790

Authors:

S Fijma, N Degenaar, N Castro Segura, TJ Maccarone, C Knigge, M Armas Padilla, D Mata Sánchez, T Muñoz-Darias, JV Hernández Santisteban, L Rhodes, J Bright, J van den Eijnden, DA Green

Abstract:

Abstract Previous work detected transient ultraviolet outflow features for the short-period (Porb ≈ 111 min), low-mass X-ray binary (LMXB) UW CrB, suggesting the presence of a disc wind in the system. However, because of the transient nature of the outflow features, and the limited amount of data available, the features were challenging to interpret. To follow up on this work, we present a comprehensive multi-wavelength campaign on UW CrB. We observe complex phenomenology and find several features that could be naturally interpreted as being associated with a persistent disc wind. Moreover, we identify a blue-shifted absorption in the Hβ line during one of the epochs, which might be the signature of such an outflow. We present an X-ray to radio campaign of the source, discuss our results in the context of accretion disc wind outflows, present a ‘toy model’ interpretation of the outflow scattering the X-ray emission into our line of sight, and explore the implications for binary evolution models. If correct, our preferred scenario of a persistent disc wind suggests that mass transfer for LMXBs can be non-conservative down to short orbital periods, and thereby opens an important parameter space for angular momentum loss in compact binaries.
More details from the publisher

Thermal Electrons in the Radio Afterglow of Relativistic Tidal Disruption Event ZTF22aaajecp/AT 2022cmc

The Astrophysical Journal American Astronomical Society 992:1 (2025) 146-146

Authors:

Lauren Rhodes, Ben Margalit, Joe S Bright, Hannah Dykaar, Rob Fender, David A Green, Daryl Haggard, Assaf Horesh, Alexander J van der Horst, Andrew K Hughes, Kunal Mooley, Itai Sfaradi, David Titterington, David Williams-Baldwin

Abstract:

Abstract A tidal disruption event (TDE) occurs when a star travels too close to a supermassive black hole. In some cases, accretion of the disrupted material onto the black hole launches a relativistic jet. In this paper, we present a long-term observing campaign to study the radio and submillimeter emission associated with the fifth jetted/relativistic TDE: AT 2022cmc. Our campaign reveals a long-lived counterpart. We fit three different models to our data: a nonthermal jet, a spherical outflow consisting of both thermal and nonthermal electrons, and a jet with thermal and nonthermal electrons. We find that the data are best described by a relativistic spherical outflow propagating into an environment with a density profile following R −1.8. Comparison of AT 2022cmc to other TDEs finds agreement in the density profile of the environment but also that AT 2022cmc is twice as energetic as the other well-studied relativistic TDE, Swift J1644. Our observations of AT 2022cmc allow a thermal electron population to be inferred for the first time in a jetted transient, providing new insights into the microphysics of relativistic transients jets.
More details from the publisher

Variability of X-ray polarization of Cyg X-1

Astronomy & Astrophysics EDP Sciences 701 (2025) a115

Authors:

Vadim Kravtsov, Anastasiia Bocharova, Alexandra Veledina, Juri Poutanen, Andrew K Hughes, Michal Dovčiak, Elise Egron, Fabio Muleri, Jakub Podgorny, Jiři Svoboda, Sofia V Forsblom, Andrei V Berdyugin, Dmitry Blinov, Joe S Bright, Francesco Carotenuto, David A Green, Adam Ingram, Ioannis Liodakis, Nikos Mandarakas, Anagha P Nitindala, Lauren Rhodes, Sergei A Trushkin, Sergey S Tsygankov, Maïmouna Brigitte, Alessandro Di Marco, Noemi Iacolina, Henric Krawczynski, Fabio La Monaca, Vladislav Loktev, Guglielmo Mastroserio, Pierre-Olivier Petrucci, Maura Pilia, Francesco Tombesi, Andrzej A Zdziarski

Abstract:

We present the results of a three-year X-ray, optical, and radio polarimetric monitoring campaign of the prototypical black hole X-ray binary Cyg X-1, conducted from 2022 to 2024. The X-ray polarization of Cyg X-1 was measured 13 times with the Imaging X-ray Polarimetry Explorer (IXPE), covering both hard and soft spectral states. The X-ray polarization degree (PD) in the hard state was found to be ≈4.0%, roughly twice as high as in the soft state, where it was around 2.2%. In both states, a statistically significant increase in PD with the energy was found. Moreover, a linear relation between PD and spectral hardness suggests a gradual and continuous evolution of the polarization properties, rather than an abrupt change of polarization production mechanism between states. The polarization angle (PA) was independent of the spectral state and showed no trend with the photon energy. The X-ray PA is well aligned with the orientation of the radio jet, as well as the optical and radio PAs. We find significant orbital changes of PA in the hard state, which we attribute to scattering of X-ray emission at the intrabinary structure. No significant superorbital variability in PD or PA was found at the period P so = 294 d. We detect, for the first time in this source, polarization of the radio emission, with the PA aligned with the jet, and a strong increase of the PD at a transition to the soft state. We also find no correlation between the X-ray and optical polarization; if any, there is a long-term anti-correlation between the X-ray PD and the radio PD.
More details from the publisher
More details

Evidence for an intrinsic luminosity–decay correlation in GRB radio afterglows

Monthly Notices of the Royal Astronomical Society Oxford University Press 542:3 (2025) 2421-2430

Authors:

SPR Shilling, SR Oates, DA Kann, J Patel, JL Racusin, B Cenko, R Gupta, M Smith, L Rhodes, KR Hinds, M Nicholl, A Breeveld, M Page, M De Pasquale, B Gompertz

Abstract:

We present the discovery of a correlation, in a sample of 16 gamma-ray burst 8.5 GHz radio afterglows, between the intrinsic luminosity measured at 10 d in the rest frame, , and the average rate of decay past this time, . The correlation has a Spearman’s rank coefficient of at a significance of and a linear regression fit of . This finding suggests that more luminous radio afterglows have higher average rates of decay than less luminous ones. We use a Monte Carlo simulation to show the correlation is not produced by chance or selection effects at a confidence level of . Previous studies found this relation in optical/UV, X-ray, and GeV afterglow light curves, and we have now extended it to radio light curves. The Spearman’s rank coefficients and the linear regression slopes for the correlation in each waveband are all consistent within . We discuss how these new results in the radio band support the effects of observer viewing geometry, and time-varying microphysical parameters, as possible causes of the correlation as suggested in previous works.
More details from the publisher
Details from ORA
More details

The Double Tidal Disruption Event AT 2022dbl Implies that at Least Some “Standard” Optical Tidal Disruption Events Are Partial Disruptions

The Astrophysical Journal Letters American Astronomical Society 987:1 (2025) L20

Authors:

Lydia Makrygianni, Iair Arcavi, Megan Newsome, Ananya Bandopadhyay, Eric R Coughlin, Itai Linial, Brenna Mockler, Eliot Quataert, Chris Nixon, Benjamin Godson, Miika Pursiainen, Giorgos Leloudas, K Decker French, Adi Zitrin, Sara Faris, Marco C Lam, Assaf Horesh, Itai Sfaradi, Michael Fausnaugh, Ehud Nakar, Kendall Ackley, Moira Andrews, Panos Charalampopoulos, Benjamin DR Davies, Rob Fender, Lauren Rhodes

Abstract:

Flares produced following the tidal disruption of stars by supermassive black holes can reveal the properties of the otherwise dormant majority of black holes and the physics of accretion. In the past decade, a class of optical-ultraviolet tidal disruption flares has been discovered whose emission properties do not match theoretical predictions. This has led to extensive efforts to model the dynamics and emission mechanisms of optical-ultraviolet tidal disruptions in order to establish them as probes of supermassive black holes. Here we present the optical-ultraviolet tidal disruption event AT 2022dbl, which showed a nearly identical repetition 700 days after the first flare. Ruling out gravitational lensing and two chance unrelated disruptions, we conclude that at least the first flare represents the partial disruption of a star, possibly captured through the Hills mechanism. Since both flares are typical of the optical-ultraviolet class of tidal disruptions in terms of their radiated energy, temperature, luminosity, and spectral features, it follows that either the entire class are partial rather than full stellar disruptions, contrary to the prevalent assumption, or some members of the class are partial disruptions, having nearly the same observational characteristics as full disruptions. Whichever option is true, these findings could require revised models for the emission mechanisms of optical-ultraviolet tidal disruption flares and a reassessment of their expected rates.
More details from the publisher
Details from ORA
More details

Pagination

  • Current page 1
  • Page 2
  • Page 3
  • Page 4
  • Page 5
  • Page 6
  • Page 7
  • Page 8
  • Page 9
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet