The Radio Counterpart to the Fast X-Ray Transient EP240414a
The Astrophysical Journal American Astronomical Society 981:1 (2025) 48
Abstract:
Despite being operational for only a short time, the Einstein Probe mission, with its large field of view and rapid localization capabilities, has already significantly advanced the study of rapid variability in the soft X-ray sky. We report the discovery of luminous and variable radio emission from the Einstein Probe fast X-ray transient EP240414a, the second such source with a radio counterpart. The radio emission at 3 GHz peaks at ∼30 days postexplosion and with a spectral luminosity ∼2 × 1030 erg s−1 Hz−1, similar to what is seen from long gamma-ray bursts, and distinct from other extragalactic transients including supernovae and tidal disruption events, although we cannot completely rule out emission from engine driven stellar explosions, e.g., the fast blue optical transients. An equipartition analysis of our radio data reveals that an outflow with at least a moderate bulk Lorentz factor (Γ ≳ 1.6) with a minimum energy of ∼1048 erg is required to explain our observations. The apparent lack of a reported gamma-ray counterpart to EP240414a could suggest that an off-axis or choked jet could be responsible for the radio emission, although a low-luminosity gamma-ray burst may have gone undetected. Our observations are consistent with the hypothesis that a significant fraction of extragalactic fast X-ray transients are associated with the deaths of massive stars.Radio observations of the ultra-long GRB 220627A reveal a hot cocoon supporting the blue supergiant progenitor scenario
ArXiv 2502.13435 (2025)
Arcminute Microkelvin Imager observations at 15.5 GHz of multiple outbursts of Cygnus X-3 in 2024
ArXiv 2502.20409 (2025)
Constraints on Relativistic Jets from the Fast X-Ray Transient 210423 Using Prompt Radio Follow-up Observations
The Astrophysical Journal American Astronomical Society 980:1 (2025) 92
Abstract:
Fast X-ray transients (FXTs) are a new observational class of phenomena with no clear physical origin. This is at least partially a consequence of limited multiwavelength follow-up of this class of transients in real time. Here we present deep optical (g- and i-band) photometry with Keck, and prompt radio observations with the Very Large Array of FXT 210423 obtained at δ t ≈ 14–36 days since the X-ray trigger. We use these multiband observations, combined with publicly available data sets, to constrain the presence and physical properties of on-axis and off-axis relativistic jets such as those that can be launched by neutron star mergers and tidal disruption events, which are among the proposed theoretical scenarios of FXTs. Considering a wide range of possible redshifts z ≤ 3.5, circumstellar medium density n = 10−6–10−1 cm−3, and isotropic-equivalent jet kinetic energy E k,iso = 1048–1055 erg, we find that we can rule out wide jets with opening angle θ j = 15° viewed within 10° off-axis. For more collimated jets (θ j = 3°) we can only rule out on-axis (θ obs = 0°) orientations. This study highlights the constraining power of prompt multiwavelength observations of FXTs discovered in real time by current (e.g., Einstein Probe) and future facilities.The Observed Phase Space of Mass-loss History from Massive Stars Based on Radio Observations of a Large Supernova Sample
The Astrophysical Journal American Astronomical Society 979:2 (2025) 189