Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
One of the substrate layouts for our organic solar cells
Credit: AFMD Group

Moritz Riede

Professor of Soft Functional Nanomaterials

Research theme

  • Photovoltaics and nanoscience

Sub department

  • Condensed Matter Physics

Research groups

  • Advanced Functional Materials and Devices (AFMD) Group
moritz.riede@physics.ox.ac.uk
Telephone: 01865 (2)72377 (office),01865 (2)82095 (lab)
  • About
  • Research
  • Teaching
  • Publications

EU COST Action MP1307 - Unravelling the degradation mechanisms of emerging solar cell technologies

MELECON 2016: 18th Mediterranean Electrotechnical Conference Institute of Electrical and Electronics Engineers (2016)

Authors:

T Aernouts, F Brunetti, J De La Fuente, N Espinosa, A Urbina, M Fonrodona, M Lira-Cantu, Y Galagan, H Hoppe, E Katz, M Ramos, Moritz Riede, K Vandewal, S Veenstra, E Von Hauff

Abstract:

Organic and hybrid perovskite based solar cells have a huge potential to significantly contribute to a clean electricity supply of the future. However, so far they exhibit complex and hierarchical degradation paths and their understanding can only be acquired through the application of complementary chemical and physical characterization techniques. This limited device stability is the main hurdle for a successful and large scale market introduction of these emerging solar cell technologies. Our StableNextSol Action has created a highly interdisciplinary network of laboratories, as well as corresponding industry, overall more than 120 partners, with complementary analytical techniques for the study and understanding of the degradation mechanisms occurring in state-of-the-art devices. Our Action integrates and generates fundamental knowledge and expertise to foster disruptive innovations targeted to mitigate device failure and to propose and develop new concepts for more stable solar cells. Value is added to the entire value chain of photovoltaic research at European and international level, as well as variety decision makers in the public sector by supporting specialisation policy and standards still lacking in this research field. The outcome of the Action will contribute to resolve the global challenges facing the industry and this COST Action initiative has brought together all these expertises and resources to promote the cooperation between different sectors, academia, public authorities and industry.
More details from the publisher
Details from ORA
More details

Plenary session 1: Engineering leadership & cognitive computing

Melecon 2010 - 2010 15th IEEE Mediterranean Electrotechnical Conference Institute of Electrical and Electronics Engineers (IEEE) (2016) 13-23

Authors:

Nicos M Timotheou, Matthias Reumann, Jovica V Milanovic, L Gene Kornegay, Ralph Stubner, Julio Hernandez-Castro, Pedro A Amado Assuncao, Julius Georgiou, Moritz Riede
More details from the publisher

Reply to 'Tandem organic solar cells revisited'

NATURE PHOTONICS 10:6 (2016) 355-355

Authors:

R Timmreck, T Meyer, J Gilot, H Seifert, T Mueller, A Furlan, MM Wienk, D Wynands, J Hohl-Ebinger, W Warta, RAJ Janssen, M Riede, K Leo
More details
More details from the publisher
Details from ORA
More details

Influence of Meso and Nanoscale Structure on the Properties of Highly Efficient Small Molecule Solar Cells

Advanced Energy Materials Wiley 6:4 (2016)

Authors:

Tobias Moench, Pascal Friederich, Felix Holzmueller, Bogdan Rutkowski, Johannes Benduhn, Timo Strunk, Christian Koerner, Koen Vandewal, Aleksandra Czyrska‐Filemonowicz, Wolfgang Wenzel, Karl Leo
More details from the publisher

Structured organic–inorganic perovskite toward a distributed feedback laser

Advanced Materials Wiley 28:5 (2015) 923-929

Authors:

Michael Saliba, Simon Wood, Jay Patel, Pabitra Nayak, Jian Huang, Jack Alexander-Webber, Bernard Wenger, Samuel Stranks, Maximilian Hörantner, Jacob Wang, Robin Nicholas, Laura Herz, Michael Johnston, Stephen Morris, Henry Snaith, Moritz Riede

Abstract:

A general strategy for the in-plane structuring of organic-inorganic perovskite films is presented. The method is used to fabricate an industrially relevant distributed feedback (DFB) cavity, which is a critical step towards all-electrially pumped injection laser diodes. This approach opens the prospects of perovskite materials for much improved optical control in LEDs, solar cells and also toward applications as optical devices.
More details from the publisher
Details from ORA
More details
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 12
  • Page 13
  • Page 14
  • Page 15
  • Current page 16
  • Page 17
  • Page 18
  • Page 19
  • Page 20
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet