Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
One of the substrate layouts for our organic solar cells
Credit: AFMD Group

Moritz Riede

Professor of Soft Functional Nanomaterials

Research theme

  • Photovoltaics and nanoscience

Sub department

  • Condensed Matter Physics

Research groups

  • Advanced Functional Materials and Devices (AFMD) Group
moritz.riede@physics.ox.ac.uk
Telephone: 01865 (2)72377 (office),01865 (2)82095 (lab)
  • About
  • Research
  • Teaching
  • Publications

Photoelectron spectroscopy investigations of recombination contacts for tandem organic solar cells

Applied Physics Letters 100:11 (2012)

Authors:

S Olthof, R Timmreck, M Riede, K Leo

Abstract:

Recombination contacts play an important role in highly efficient organic tandem solar cells. We present a photoelectron spectroscopy study on contact systems that have previously been shown to work efficiently as recombination contacts. Here, the conversion of an electron current into a hole current is realized either by insertion of gold clusters or by a highly doped pn-junction. From the measured energy level alignments, we show that the working principles of these two approaches are significantly different. For gold clusters, the recombination current is promoted by an accumulation of charge carriers, while for doped pn-junctions, it is achieved by tunneling through a depletion layer. © 2012 American Institute of Physics.
More details from the publisher
Details from ORA
More details

2-(2-Methoxyphenyl)-1,3-dimethyl-1H-benzoimidazol-3-ium iodide as a new air-stable n-type dopant for vacuum-processed organic semiconductor thin films.

J Am Chem Soc 134:9 (2012) 3999-4002

Authors:

Peng Wei, Torben Menke, Benjamin D Naab, Karl Leo, Moritz Riede, Zhenan Bao

Abstract:

2-(2-Methoxyphenyl)-1,3-dimethyl-1H-benzoimidazol-3-ium iodide (o-MeO-DMBI-I) was synthesized and employed as a strong n-type dopant for fullerene C(60), a well-known n-channel semiconductor. The coevaporated thin films showed a maximum conductivity of 5.5 S/cm at a doping concentration of 8.0 wt% (14 mol%), which is the highest value reported to date for molecular n-type conductors. o-MeO-DMBI-I can be stored and handled in air for extended periods without degradation and is thus promising for various organic electronic devices.
More details from the publisher
Details from ORA
More details

Erratum: Highly efficient semitransparent tandem organic solar cells with complementary absorber materials (Applied Physics Letters (2011) 99 (043301))

Applied Physics Letters 100:9 (2012)

Authors:

J Meiss, T Menke, K Leo, C Uhrich, WM Gnehr, S Sonntag, M Pfeiffer, M Riede
More details from the publisher
Details from ORA
More details

In-situ conductivity and Seebeck measurements of highly efficient n-dopants in fullerene C60

Applied Physics Letters 100:9 (2012)

Authors:

T Menke, D Ray, J Meiss, K Leo, M Riede

Abstract:

We present two organic dimetal complexes Cr2(hpp)4 and W2(hpp)4 as n-dopants investigated in the model system of fullerene C60 for the application in organic electronic devices. Conductivity and Seebeck measurements on doped layers are carried out in vacuum at different doping concentrations and various substrate temperatures to compare the two dopants. Very high conductivities of up to 4 S/cm are achieved for both organic dopants. The thermal activation energy of the conductivity as well as the measured Seebeck coefficient are found to decrease with increasing doping concentration, indicating a shift of the Fermi level towards the electron transport level of the n-doped C60. © 2012 American Institute of Physics.
More details from the publisher
Details from ORA
More details

Interrelation between crystal packing and small-molecule organic solar cell performance.

Adv Mater 24:5 (2012) 675-680

Authors:

Roland Fitzner, Chris Elschner, Matthias Weil, Christian Uhrich, Christian Körner, Moritz Riede, Karl Leo, Martin Pfeiffer, Egon Reinold, Elena Mena-Osteritz, Peter Bäuerle

Abstract:

X-ray investigations on single crystals of a series of terminally dicyanovinyl-substituted quaterthiophenes and co-evaporated blend layers with C(60) give insight into molecular packing behavior and morphology, which are crucial parameters in the field of organic electronics. Structural characteristics on various levels and length scales are correlated with the photovoltaic performance of bulk heterojunction small-molecule organic solar cells.
More details from the publisher
Details from ORA
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 26
  • Page 27
  • Page 28
  • Page 29
  • Current page 30
  • Page 31
  • Page 32
  • Page 33
  • Page 34
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet