Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Black Hole

Lensing of space time around a black hole. At Oxford we study black holes observationally and theoretically on all size and time scales - it is some of our core work.

Credit: ALAIN RIAZUELO, IAP/UPMC/CNRS. CLICK HERE TO VIEW MORE IMAGES.

Prof. Dimitra Rigopoulou

Professor of Astrophysics

Research theme

  • Astronomy and astrophysics

Sub department

  • Astrophysics

Research groups

  • Galaxy formation and evolution
Dimitra.Rigopoulou@physics.ox.ac.uk
Telephone: 01865 (2)73296
Denys Wilkinson Building, room 75419514947
  • About
  • Publications

HerMES: dust attenuation and star formation activity in UV-selected samples from z~4 to z~1.5

(2013)

Authors:

S Heinis, V Buat, M Bethermin, J Bock, D Burgarella, A Conley, A Cooray, D Farrah, O Ilbert, G Magdis, G Marsden, SJ Oliver, D Rigopoulou, Y Roehlly, B Schulz, M Symeonidis, M Viero, CK Xu, M Zemcov
More details from the publisher

Far-infrared fine-structure line diagnostics of ultraluminous infrared galaxies

Astrophysical Journal 776:1 (2013)

Authors:

D Farrah, V Lebouteiller, HWW Spoon, J Bernard-Salas, C Pearson, D Rigopoulou, HA Smith, E González-Alfonso, DL Clements, A Efstathiou, D Cormier, J Afonso, SM Petty, K Harris, P Hurley, C Borys, A Verma, A Cooray, V Salvatelli

Abstract:

We present Herschel observations of 6 fine-structure lines in 25 ultraluminous infrared galaxies at z < 0.27. The lines, [O III]52 μm, [N III]57 μm, [O I]63 μm, [N II]122 μm, [O I]145 μm, and [C II]158 μm, are mostly single Gaussians with widths <600 km s-1 and luminosities of 107-109 LO. There are deficits in the [O I]63/L IR, [N II]/L IR, [O I]145/L IR, and [C II]/L IR ratios compared to lower luminosity systems. The majority of the line deficits are consistent with dustier H II regions, but part of the [C II] deficit may arise from an additional mechanism, plausibly charged dust grains. This is consistent with some of the [C II] originating from photodissociation regions or the interstellar medium (ISM). We derive relations between far-IR line luminosities and both the IR luminosity and star formation rate. We find that [N II] and both [O I] lines are good tracers of the IR luminosity and star formation rate. In contrast, [C II] is a poor tracer of the IR luminosity and star formation rate, and does not improve as a tracer of either quantity if the [C II] deficit is accounted for. The continuum luminosity densities also correlate with the IR luminosity and star formation rate. We derive ranges for the gas density and ultraviolet radiation intensity of 101 < n < 102.5 and 102.2 < G 0 < 103.6, respectively. These ranges depend on optical type, the importance of star formation, and merger stage. We do not find relationships between far-IR line properties and several other parameters: active galactic nucleus (AGN) activity, merger stage, mid-IR excitation, and SMBH mass. We conclude that these far-IR lines arise from gas heated by starlight, and that they are not strongly influenced by AGN activity. © 2013. The American Astronomical Society. All rights reserved.
More details from the publisher
More details

Diagnostics of agn-driven molecular outflows in ulirgs from herschel-pacs observations of oh at 119 μm

Astrophysical Journal 775:2 (2013)

Authors:

HWW Spoon, D Farrah, V Lebouteiller, E González-Alfonso, J Bernard-Salas, T Urrutia, D Rigopoulou, MS Westmoquette, HA Smith, J Afonso, C Pearson, D Cormier, A Efstathiou, C Borys, A Verma, M Etxaluze, DL Clements

Abstract:

We report on our observations of the 79 and 119 μm doublet transitions of OH for 24 local (z < 0.262) ULIRGs observed with Herschel-PACS as part of the Herschel ULIRG Survey (HERUS). Some OH 119 μm profiles display a clear P-Cygni shape and therefore imply outflowing OH gas, while other profiles are predominantly in absorption or are completely in emission. We find that the relative strength of the OH emission component decreases as the silicate absorption increases. This result locates the OH outflows inside the obscured nuclei. The maximum outflow velocities for our sources range from less than 100 to 2000 km s-1, with 15/24 (10/24) sources showing OH absorption at velocities exceeding 700 km s-1 (1000 km s-1). Three sources show maximum OH outflow velocities exceeding that of Mrk231. Since outflow velocities above 500-700 km s-1 are thought to require an active galactic nucleus (AGN) to drive them, about two-thirds of our ULIRG sample may host AGN-driven molecular outflows. This finding is supported by the correlation we find between the maximum OH outflow velocity and the IR-derived bolometric AGN luminosity. No such correlation is found with the IR-derived star formation rate. The highest outflow velocities are found among sources that are still deeply embedded. We speculate that the molecular outflows in these sources may be in an early phase of disrupting the nuclear dust veil before these sources evolve into less-obscured AGNs. Four of our sources show high-velocity wings in their [C II] fine-structure line profiles, implying neutral gas outflow masses of at least (2-4.5) × 108 M. © 2013. The American Astronomical Society. All rights reserved..
More details from the publisher
More details

Herschel observations and a model for IRAS 08572+3915: a candidate for the most luminous infrared galaxy in the local (z < 0.2) Universe

(2013)

Authors:

A Efstathiou, C Pearson, D Farrah, D Rigopoulou, J Gracia-Carpio, A Verma, HWW Spoon, J Afonso, J Bernard-Salas, DL Clements, A Cooray, D Cormier, M Etxaluze, J Fischer, E Gonzalez-Alfonso, P Hurley, V Lebouteiller, SJ Oliver, M Rowan-Robinson, E Sturm
More details from the publisher

HerMES: The far-infrared emission from dust-obscured galaxies

Astrophysical Journal 775:1 (2013)

Authors:

JA Calanog, J Wardlow, H Fu, A Cooray, RJ Assef, J Bock, CM Casey, A Conley, D Farrah, E Ibar, J Kartaltepe, G Magdis, L Marchetti, SJ Oliver, I Pérez-Fournon, D Riechers, D Rigopoulou, IG Roseboom, B Schulz, D Scott, M Symeonidis, M Vaccari, M Viero, M Zemcov

Abstract:

Dust-obscured galaxies (DOGs) are an ultraviolet-faint, infrared-bright galaxy population that reside at z ∼ 2 and are believed to be in a phase of dusty star-forming and active galactic nucleus (AGN) activity. We present far-infrared (far-IR) observations of a complete sample of DOGs in the 2 deg2 of the Cosmic Evolution Survey. The 3077 DOGs have 〈z〉 = 1.9 ± 0.3 and are selected from 24 μm and r + observations using a color cut of r +-[24] ≥ 7.5 (AB mag) and S 24 ≥ 100 μJy. Based on the near-IR spectral energy distributions, 47% are bump DOGs (star formation dominated) and 10% are power-law DOGs (AGN-dominated). We use SPIRE far-IR photometry from the Herschel Multi-tiered Extragalactic Survey to calculate the IR luminosity and characteristic dust temperature for the 1572 (51%) DOGs that are detected at 250 μm (≥3σ). For the remaining 1505 (49%) that are undetected, we perform a median stacking analysis to probe fainter luminosities. Herschel-detected and undetected DOGs have average luminosities of (2.8 ± 0.4) × 1012 L⊙ and (0.77 ± 0.08) × 10 12 L⊙, and dust temperatures of (33 ± 7) K and (37 ± 5) K, respectively. The IR luminosity function for DOGs with S 24 ≥ 100 μJy is calculated, using far-IR observations and stacking. DOGs contribute 10%-30% to the total star formation rate (SFR) density of the universe at z = 1.5-2.5, dominated by 250 μm detected and bump DOGs. For comparison, DOGs contribute 30% to the SFR density for all z = 1.5-2.5 galaxies with S 24 ≥ 100 μJy. DOGs have a large scatter about the star formation main sequence and their specific SFRs show that the observed phase of star formation could be responsible for their total observed stellar mass at z ∼ 2. © 2013. The American Astronomical Society. All rights reserved.
More details from the publisher
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 39
  • Page 40
  • Page 41
  • Page 42
  • Current page 43
  • Page 44
  • Page 45
  • Page 46
  • Page 47
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet