Seds: The spitzer extended deep survey. Survey design, photometry, and deep irac source counts
Astrophysical Journal 769:1 (2013)
Abstract:
The Spitzer Extended Deep Survey (SEDS) is a very deep infrared survey within five well-known extragalactic science fields: the UKIDSS Ultra-Deep Survey, the Extended Chandra Deep Field South, COSMOS, the Hubble Deep Field North, and the Extended Groth Strip. SEDS covers a total area of 1.46 deg 2 to a depth of 26 AB mag (3σ) in both of the warm Infrared Array Camera (IRAC) bands at 3.6 and 4.5 μm. Because of its uniform depth of coverage in so many widely-separated fields, SEDS is subject to roughly 25% smaller errors due to cosmic variance than a single-field survey of the same size. SEDS was designed to detect and characterize galaxies from intermediate to high redshifts (z = 2-7) with a built-in means of assessing the impact of cosmic variance on the individual fields. Because the full SEDS depth was accumulated in at least three separate visits to each field, typically with six-month intervals between visits, SEDS also furnishes an opportunity to assess the infrared variability of faint objects. This paper describes the SEDS survey design, processing, and publicly-available data products. Deep IRAC counts for the more than 300,000 galaxies detected by SEDS are consistent with models based on known galaxy populations. Discrete IRAC sources contribute 5.6 ± 1.0 and 4.4 ± 0.8 nW m-2 sr-1 at 3.6 and 4.5 μm to the diffuse cosmic infrared background (CIB). IRAC sources cannot contribute more than half of the total CIB flux estimated from DIRBE data. Barring an unexpected error in the DIRBE flux estimates, half the CIB flux must therefore come from a diffuse component. © 2013. The American Astronomical Society. All rights reserved.Herschel-ATLAS/GAMA: What determines the far-infrared properties of radio-galaxies?
(2013)
Multi-wavelength study of a complete IRAC 3.6 μm selected galaxy sample: A fair census of red and blue populations at redshifts 0.4-1.2
Astrophysical Journal 766:1 (2013)
Abstract:
We present a multi-wavelength study of a 3.6 μm selected galaxy sample in the Extended Groth Strip (EGS). The sample is complete for galaxies with stellar mass >109.5 Mȯ and redshift 0.4 < z < 1.2. In this redshift range, the Infrared Array Camera 3.6 μm band measures the rest-frame near-infrared band, permitting nearly unbiased selection with respect to both quiescent and star-forming galaxies. The numerous spectroscopic redshifts available in the EGS are used to train an artificial neural network to estimate photometric redshifts. The distribution of photometric redshift errors is Gaussian with standard deviation ∼0.025(1 + z), and the fraction of redshift failures (>3σ errors) is about 3.5%. A new method of validation based on pair statistics confirms the estimate of standard deviation even for galaxies lacking spectroscopic redshifts. Basic galaxy properties measured include rest-frame U-B colors, B- and K-band absolute magnitudes, and stellar masses. We divide the sample into quiescent and star-forming galaxies according to their rest-frame U-B colors and 24-3.6 μm flux density ratios and derive rest K-band luminosity functions and stellar mass functions for quiescent, star-forming, and all galaxies. The results show that massive, quiescent galaxies were in place by z ≈ 1, but lower mass galaxies generally ceased their star formation at later epochs. © 2013. The American Astronomical Society. All rights reserved..Local luminous infrared galaxies. III. co-evolution of black hole growth and star formation activity?
Astrophysical Journal 765:2 (2013)