HerMES: Far infrared properties of known AGN in the HerMES fields
Astronomy and Astrophysics 518:2 (2010)
Abstract:
Nuclear and starburst activity are known to often occur concomitantly. Herschel-SPIRE provides sampling of the far-infrared (FIR) spectral energy distributions (SEDs) of type 1 and type 2 AGN, allowing for the separation between the hot dust (torus) and cold dust (starburst) emission. We study large samples of spectroscopically confirmed type 1 and type 2 AGN lying within the Herschel Multi-tiered Extragalactic Survey (HerMES) fields observed during the science demonstration phase, aiming to understand their FIR colour distributions and constrain their starburst contributions. We find that one third of the spectroscopically confirmed AGN in the HerMES fields have 5σ detections at 250 μm, in agreement with previous (sub)mm AGN studies. Their combined Spitzer-MIPS and Herschel-SPIRE colours (specifically S250/S 70 vs S70/S24) quite clearly separate them from the non-AGN, star forming galaxy population, as their 24 μm flux is dominated by the hot torus emission. However, their SPIRE colours alone do not differ from those of non-AGN galaxies. SED fitting shows that all those AGN need a starburst component to fully account for their FIR emission. For objects at z > 2 we find a correlation between the infrared luminosity attributed to the starburst component, LSB, and the AGN accretion luminosity, L acc, with LSB proptoLacc0.35. Type 2 AGN detected at 250 μm show on average higher LSB than type 1 objects but their number is still too low to establish whether this trend indicates stronger star formation activity. © 2010 ESO.HerMES: Halo occupation number and bias properties of dusty galaxies from angular clustering measurements
Astronomy and Astrophysics 518:1 (2010)
Abstract:
We measure the angular correlation function, w(θ), from 0.5 to 30 arcmin of detected sources in two wide fields of the Herschel Multi-tiered Extragalactic Survey (HerMES). Our measurements are consistent with the expected clustering shape from a population of sources that trace the dark matter density field, including non-linear clustering at arcminute angular scales arising from multiple sources that occupy the same dark matter halos. By making use of the halo model to connect the spatial clustering of sources to the dark matter halo distribution, we estimate source bias and halo occupation number for dusty sub-mm galaxies at z ∼ 2. We find that sub-mm galaxies with 250 μm flux densities above 30 mJy reside in dark matter halos with mass above (5±4)×1012 M⊙, while (14±8)% of such sources appear as satellites in more massive halos. © 2010 ESO.HerMES: SPIRE galaxy number counts at 250, 350, and 500 μ m
Astronomy and Astrophysics 518:7-8 (2010)
Abstract:
Emission at far-infrared wavelengths makes up a significant fraction of the total light detected from galaxies over the age of Universe. Herschel provides an opportunity for studying galaxies at the peak wavelength of their emission. Our aim is to provide a benchmark for models of galaxy population evolution and to test pre-existing models of galaxies. With the Herschel Multi-tiered Extra-galactic survey, HerMES, we have observed a number of fields of different areas and sensitivity using the SPIRE instrument on Herschel. We have determined the number counts of galaxies down to ~20 mJy. Our constraints from directly counting galaxies are consistent with, though more precise than, estimates from the BLAST fluctuation analysis. We have found a steep rise in the Euclidean normalised counts <100 mJy. We have directly resolved ~15% of the infrared extra-galactic background at the wavelength near where it peaks. © 2010 ESO.HerMES: The SPIRE confusion limit
Astronomy and Astrophysics 518:2 (2010)
Abstract:
We report on the sensitivity of SPIRE photometers on the Herschel Space Observatory. Specifically, we measure the confusion noise from observations taken during the science demonstration phase of the Herschel Multi-tiered Extragalactic Survey. Confusion noise is defined to be the spatial variation of the sky intensity in the limit of infinite integration time, and is found to be consistent among the different fields in our survey at the level of 5.8, 6.3 and 6.8 mJy/beam at 250, 350 and 500 μm, respectively. These results, together with the measured instrument noise, may be used to estimate the integration time required for confusion limited maps, and provide a noise estimate for maps obtained by SPIRE. © 2010 ESO.HerMES: The submillimeter spectral energy distributions of Herschel/SPIRE-detected galaxies
Astronomy and Astrophysics 518:2 (2010)