Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Black Hole

Lensing of space time around a black hole. At Oxford we study black holes observationally and theoretically on all size and time scales - it is some of our core work.

Credit: ALAIN RIAZUELO, IAP/UPMC/CNRS. CLICK HERE TO VIEW MORE IMAGES.

Prof. Dimitra Rigopoulou

Professor of Astrophysics

Research theme

  • Astronomy and astrophysics

Sub department

  • Astrophysics

Research groups

  • Galaxy formation and evolution
Dimitra.Rigopoulou@physics.ox.ac.uk
Telephone: 01865 (2)73296
Denys Wilkinson Building, room 75419514947
  • About
  • Publications

In-flight calibration of the Herschel-SPIRE instrument

Astronomy and Astrophysics 518:1 (2010)

Authors:

BM Swinyard, A Dowell, M Ferlet, D Griffin, S Guest, K King, S Leeks, TL Lim, C Pearson, E Polehampton, D Rigopoulou, S Ronayette, S Sidher, P Ade, M Griffin, K Isaak, A Papageorgiou, M Pohlen, A Rykala, L Spencer, J-P Baluteau, D Benielli, D Pouliquen, MJ Barlow, G Savini, R Wesson, GJ Bendo, M Trichas, J Bock, D Dowell, H Nguyen, D Brisbin, A Conley, L Conversi, I Valtchanov, T Fulton, P Imhof, J Glenn, M Zemcov, L Levenson, N Lu, B Schulz, A Schwartz, D Shupe, CK Xu, L Zhang, S Jones, G Makiwa, D Naylor, S Oliver, AJ Smith, H Aussel, P Panuzzo, H Triou, H Roussel, A Woodcraft, A Glauser, B Sibthorpe

Abstract:

SPIRE, the Spectral and Photometric Imaging REceiver, is the Herschel Space Observatory's submillimetre camera and spectrometer. It contains a three-band imaging photometer operating at 250, 350 and 500 μm, and an imaging Fourier-transform spectrometer (FTS) covering 194-671 μm (447-1550 GHz). In this paper we describe the initial approach taken to the absolute calibration of the SPIRE instrument using a combination of the emission from the Herschel telescope itself and the modelled continuum emission from solar system objects and other astronomical targets. We present the photometric, spectroscopic and spatial accuracy that is obtainable in data processed through the "standard" pipelines. The overall photometric accuracy at this stage of the mission is estimated as 15% for the photometer and between 15 and 50% for the spectrometer. However, there remain issues with the photometric accuracy of the spectra of low flux sources in the longest wavelength part of the SPIRE spectrometer band. The spectrometer wavelength accuracy is determined to be better than 1/10th of the line FWHM. The astrometric accuracy in SPIRE maps is found to be 2 arcsec when the latest calibration data are used. The photometric calibration of the SPIRE instrument is currently determined by a combination of uncertainties in the model spectra of the astronomical standards and the data processing methods employed for map and spectrum calibration. Improvements in processing techniques and a better understanding of the instrument performance will lead to the final calibration accuracy of SPIRE being determined only by uncertainties in the models of astronomical standards. © 2010 ESO.
More details from the publisher
More details

The HerMES SPIRE submillimeter local luminosity function

Astronomy and Astrophysics 518:7-8 (2010)

Authors:

M Vaccari, L Marchetti, A Franceschini, B Altieri, A Amblard, V Arumugam, R Auld, H Aussel, T Babbedge, A Blain, J Bock, A Boselli, V Buat, D Burgarella, N Castro-Rodríguez, A Cava, P Chanial, DL Clements, A Conley, L Conversi, A Cooray, CD Dowell, E Dwek, S Dye, S Eales, D Elbaz, D Farrah, M Fox, W Gear, J Glenn, EA González Solares, M Griffin, M Halpern, E Hatziminaoglou, J Huang, E Ibar, K Isaak, RJ Ivison, G Lagache, L Levenson, N Lu, S Madden, B Maffei, G Mainetti, AMJ Mortier, HT Nguyen, B O'Halloran, SJ Oliver, A Omont, MJ Page, P Panuzzo, A Papageorgiou, CP Pearson, I Pérez-Fournon, M Pohlen, JI Rawlings, G Raymond, D Rigopoulou, D Rizzo, G Rodighiero, IG Roseboom, M Rowan-Robinson, M Sánchez Portal, B Schulz, D Scott, N Seymour, DL Shupe, AJ Smith, JA Stevens, M Symeonidis, M Trichas, KE Tugwell, E Valiante, I Valtchanov, L Vigroux, L Wang, R Ward, G Wright, CK Xu, M Zemcov

Abstract:

Local luminosity functions are fundamental benchmarks for high-redshift galaxy formation and evolution studies as well as for models describing these processes. Determining the local luminosity function in the submillimeter range can help to better constrain in particular the bolometric luminosity density in the local Universe, and Herschel offers the first opportunity to do so in an unbiased way by imaging large sky areas at several submillimeter wavelengths. We present the first Herschel measurement of the submillimeter 0 < z < 0.2 local luminosity function and infrared bolometric (8-1000 μm) local luminosity density based on SPIRE data from the HerMES Herschel key program over 14.7 deg2. Flux measurements in the three SPIRE channels at 250, 350 and 500 μm are combined with Spitzer photometry and archival data. We fit the observed optical-to-submillimeter spectral energy distribution of SPIRE sources and use the 1/Vmax estimator to provide the first constraints on the monochromatic 250, 350 and 500 μm as well as on the infrared bolometric (8-1000 μm) local luminosity function based on Herschel data. We compare our results with modeling predictions and find a slightly more abundant local submillimeter population than predicted by a number of models. Our measurement of the infrared bolometric (8-1000 μm) local luminosity function suggests a flat slope at low luminosity, and the inferred local luminosity density, 1.31-0.21+0.24 × 108 L ⊙ Mpc-3, is consistent with the range of values reported in recent literature. © 2010 ESO.
More details from the publisher

The HerMES SPIRE submillimeter local luminosity function

Astronomy and Astrophysics 518:2 (2010)

Authors:

M Vaccari, L Marchetti, A Franceschini, B Altieri, A Amblard, V Arumugam, R Auld, H Aussel, T Babbedge, A Blain, J Bock, A Boselli, V Buat, D Burgarella, N Castro-Rodríguez, A Cava, P Chanial, DL Clements, A Conley, L Conversi, A Cooray, CD Dowell, E Dwek, S Dye, S Eales, D Elbaz, D Farrah, M Fox, W Gear, J Glenn, EA González Solares, M Griffin, M Halpern, E Hatziminaoglou, J Huang, E Ibar, K Isaak, RJ Ivison, G Lagache, L Levenson, N Lu, S Madden, B Maffei, G Mainetti, AMJ Mortier, HT Nguyen, B O'Halloran, SJ Oliver, A Omont, MJ Page, P Panuzzo, A Papageorgiou, CP Pearson, I Pérez-Fournon, M Pohlen, JI Rawlings, G Raymond, D Rigopoulou, D Rizzo, G Rodighiero, IG Roseboom, M Rowan-Robinson, M Sánchez Portal, B Schulz, D Scott, N Seymour, DL Shupe, AJ Smith, JA Stevens, M Symeonidis, M Trichas, KE Tugwell, E Valiante, I Valtchanov, L Vigroux, L Wang, R Ward, G Wright, CK Xu, M Zemcov

Abstract:

Local luminosity functions are fundamental benchmarks for high-redshift galaxy formation and evolution studies as well as for models describing these processes. Determining the local luminosity function in the submillimeter range can help to better constrain in particular the bolometric luminosity density in the local Universe, and Herschel offers the first opportunity to do so in an unbiased way by imaging large sky areas at several submillimeter wavelengths. We present the first Herschel measurement of the submillimeter 0 < z < 0.2 local luminosity function and infrared bolometric (8-1000 μm) local luminosity density based on SPIRE data from the HerMES Herschel key program over 14.7 deg2. Flux measurements in the three SPIRE channels at 250, 350 and 500?m are combined with Spitzer photometry and archival data. We fit the observed optical-to-submillimeter spectral energy distribution of SPIRE sources and use the 1/Vmax estimator to provide the first constraints on the monochromatic 250, 350 and 500?m as well as on the infrared bolometric (81000 μm) local luminosity function based on Herschel data. We compare our results with modeling predictions and find a slightly more abundant local submillimeter population than predicted by a number of models. Our measurement of the infrared bolometric (8-1000 7mu;m) local luminosity function suggests a flat slope at low luminosity, and the inferred local luminosity density, 1.31+0.24-0.21× 108 L-Mpc-3, is consistent with the range of values reported in recent literature. © 2010 ESO.
More details from the publisher

Measures of star formation rates from Infrared (Herschel) and UV (GALEX) emissions of galaxies in the HerMES fields

(2010)

Authors:

V Buat, E Giovannoli, D Burgarella, B Altieri, A Amblard, V Arumugam, H Aussel, T Babbedge, A Blain, J Bock, A Boselli, N Castro-Rodriguez, A Cava, P Chanial, DL Clements, A Conley, L Conversi, A Cooray, CD Dowell, E Dwek, S Eales, D Elbaz, M Fox, A Franceschini, W Gear, J Glenn, M Griffin, M Halpern, E Hatziminaoglou, S Heinis, E Ibar, K Isaak, RJ Ivison, G Lagache, L Levenson, CJ Lonsdale, N Lu, S Madden, B Maffei, G Magdis, G Mainetti, L Marchetti, GE Morrison, HT Nguyen, B O'Halloran, SJ Oliver, A Omont, FN Owen, MJ Page, M Pannella, P Panuzzo, A Papageorgiou, CP Pearson, I Perez-Fournon, M Pohlen, D Rigopoulou, D Rizzo, IG Roseboom, M Rowan-Robinson, M Sanchez Portal, B Schulz, N Seymour, DL Shupe, AJ Smith, JA Stevens, V Strazzullo, M Symeonidis, M Trichas, KE Tugwell, M Vaccari, E Valiante, I Valtchanov, L Vigroux, L Wang, R Ward, G Wright, CK Xu, M Zemcov
More details from the publisher

In-flight calibration of the Herschel-SPIRE instrument

(2010)

Authors:

BM Swinyard, P Ade, J-P Baluteau, H Aussel, MJ Barlow, GJ Bendo, D Benielli, J Bock, D Brisbin, A Conley, L Conversi, A Dowell, D Dowell, M Ferlet, T Fulton, J Glenn, A Glauser, D Griffin, M Griffin, S Guest, P Imhof, K Isaak, S Jones, K King, S Leeks, L Levenson, TL Lim, N Lu, G Makiwa, D Naylor, H Nguyen, S Oliver, P Panuzzo, A Papageorgiou, C Pearson, M Pohlen, E Polehampton, D Pouliquen, D Rigopoulou, S Ronayette, H Roussel, A Rykala, G Savini, B Schulz, A Schwartz, D Shupe, B Sibthorpe, S Sidher, AJ Smith, L Spencer, M Trichas, H Triou, I Valtchanov, R Wesson, A Woodcraft, CK Xu, M Zemcov, L Zhang
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 61
  • Page 62
  • Page 63
  • Page 64
  • Current page 65
  • Page 66
  • Page 67
  • Page 68
  • Page 69
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet