Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Black Hole

Lensing of space time around a black hole. At Oxford we study black holes observationally and theoretically on all size and time scales - it is some of our core work.

Credit: ALAIN RIAZUELO, IAP/UPMC/CNRS. CLICK HERE TO VIEW MORE IMAGES.

Prof. Dimitra Rigopoulou

Professor of Astrophysics

Research theme

  • Astronomy and astrophysics

Sub department

  • Astrophysics

Research groups

  • Galaxy formation and evolution
Dimitra.Rigopoulou@physics.ox.ac.uk
Telephone: 01865 (2)73296
Denys Wilkinson Building, room 75419514947
  • About
  • Publications

HerMES: The SPIRE confusion limit

Astronomy and Astrophysics 518:8 (2010)

Authors:

HT Nguyen, B Schulz, L Levenson, A Amblard, V Arumugam, H Aussel, T Babbedge, A Blain, J Bock, A Boselli, V Buat, N Castro-Rodriguez, A Cava, P Chanial, E Chapin, DL Clements, A Conley, L Conversi, A Cooray, CD Dowell, E Dwek, S Eales, D Elbaz, M Fox, A Franceschini, W Gear, J Glenn, M Griffin, M Halpern, E Hatziminaoglou, E Ibar, K Isaak, RJ Ivison, G Lagache, N Lu, S Madden, B Maffei, G Mainetti, L Marchetti, G Marsden, J Marshall, B O'Halloran, SJ Oliver, A Omont, MJ Page, P Panuzzo, A Papageorgiou, CP Pearson, I Perez Fournon, M Pohlen, N Rangwala, D Rigopoulou, D Rizzo, IG Roseboom, M Rowan-Robinson, D Scott, N Seymour, DL Shupe, AJ Smith, JA Stevens, M Symeonidis, M Trichas, KE Tugwell, M Vaccari, I Valtchanov, L Vigroux, L Wang, R Ward, D Wiebe, G Wright, CK Xu, M Zemcov

Abstract:

We report on the sensitivity of SPIRE photometers on the Herschel Space Observatory. Specifically, we measure the confusion noise from observations taken during the science demonstration phase of the Herschel Multi-tiered Extragalactic Survey. Confusion noise is defined to be the spatial variation of the sky intensity in the limit of infinite integration time, and is found to be consistent among the different fields in our survey at the level of 5.8, 6.3 and 6.8 mJy/beam at 250, 350 and 500 μm, respectively. These results, together with the measured instrument noise, may be used to estimate the integration time required for confusion limited maps, and provide a noise estimate for maps obtained by SPIRE. © 2010 ESO.
More details from the publisher

Herschel reveals a Tdust-unbiased selection of z~ 2 ultraluminous infrared galaxies

Monthly Notices of the Royal Astronomical Society 409:1 (2010) 22-28

Authors:

GE Magdis, D Elbaz, HS Hwang, A Amblard, V Arumugam, H Aussel, A Blain, J Bock, A Boselli, V Buat, N Castro-Rodríguez, A Cava, P Chanial, DL Clements, A Conley, L Conversi, A Cooray, CD Dowell, E Dwek, S Eales, D Farrah, A Franceschini, J Glenn, M Griffin, M Halpern, E Hatziminaoglou, J Huang, E Ibar, K Isaak, E Le Floc'h, G Lagache, L Levenson, CJ Lonsdale, N Lu, S Madden, B Maffei, G Mainetti, L Marchetti, GE Morrison, HT Nguyen, B O'Halloran, SJ Oliver, A Omont, FN Owen, MJ Page, M Pannella, P Panuzzo, A Papageorgiou, CP Pearson, I Pérez-Fournon, M Pohlen, D Rigopoulou, D Rizzo, IG Roseboom, M Rowan-Robinson, B Schulz, D Scott, N Seymour, DL Shupe, AJ Smith, JA Stevens, V Strazzullo, M Symeonidis, M Trichas, KE Tugwell, M Vaccari, I Valtchanov, L Vigroux, L Wang, G Wright, CK Xu, M Zemcov

Abstract:

Using Herschel Photodetector Array Camera (PACS) and Spectral and Photometric Imaging Receiver (SPIRE) observations of Lockman Hole-North and Great Observatories Origins Deep Survey-North (GOODS-N) as part of the Herschel Multi-tiered Extragalactic Survey (HerMES) project, we explore the far-infrared (IR) properties of a sample of mid-IR-selected starburst-dominated ultraluminous infrared galaxies (ULIRGs) at z~ 2. The selection of the sample is based on the detection of the stellar bump that appears in the spectral energy distribution of star-forming galaxies at 1.6 μm. We derive robust estimates of infrared luminosities (LIR) and dust temperatures (Td) of the population and find that while the luminosities in our sample span less than an order of magnitude (12.24 ≤ log(LIR/L·) ≤ 12.94), they cover a wide range of dust temperatures (25 ≤Td≤ 62 K). Galaxies in our sample range from those that are as cold as high-z submillimetre galaxies (SMGs) to those that are as warm as optically faint radio galaxies (OFRGs) and local ULIRGs. Nevertheless, our sample has median Td= 42.3 K, filling the gap between SMGs and OFRGs, bridging the two populations. We demonstrate that a significant fraction of our sample would be missed from ground-based (sub)mm surveys (850-1200 μm), showing that the latter introduce a bias towards the detection of colder sources. We conclude that Herschel observations confirm the existence of high-z ULIRGs warmer than SMGs, show that the mid-IR selection of high-z ULIRGs is not Td dependent, reveal a large dispersion in Td of high-z ULIRGs and provide the means to characterize the bulk of the ULIRG population, free from selection biases introduced by ground-based (sub)mm surveys. © 2010 The Authors. Journal compilation © 2010 RAS.
More details from the publisher

Herschel-ATLAS: Far-infrared properties of radio-selected galaxies

Monthly Notices of the Royal Astronomical Society 409:1 (2010) 122-131

Authors:

MJ Hardcastle, JS Virdee, MJ Jarvis, DG Bonfield, L Dunne, S Rawlings, JA Stevens, NM Christopher, I Heywood, T Mauch, D Rigopoulou, A Verma, IK Baldry, SP Bamford, S Buttiglione, A Cava, DL Clements, A Cooray, SM Croom, A Dariush, G De Zotti, S Eales, J Fritz, DT Hill, D Hughes, R Hopwood, E Ibar, RJ Ivison, DH Jones, J Loveday, SJ Maddox, MJ Michałowski, M Negrello, P Norberg, M Pohlen, M Prescott, EE Rigby, ASG Robotham, G Rodighiero, D Scott, R Sharp, DJB Smith, P Temi, E Van Kampen

Abstract:

We use the Herschel-Astrophysical Terahertz Large Area Survey (ATLAS) science demonstration data to investigate the star formation properties of radio-selected galaxies in the GAMA-9h field as a function of radio luminosity and redshift. Radio selection at the lowest radio luminosities, as expected, selects mostly starburst galaxies. At higher radio luminosities, where the population is dominated by active galactic nuclei (AGN), we find that some individual objects are associated with high far-infrared luminosities. However, the far-infrared properties of the radio-loud population are statistically indistinguishable from those of a comparison population of radio-quiet galaxies matched in redshift and K-band absolute magnitude. There is thus no evidence that the host galaxies of these largely low-luminosity (Fanaroff-Riley class I), and presumably low-excitation, AGN, as a population, have particularly unusual star formation histories. Models in which the AGN activity in higher luminosity, high-excitation radio galaxies is triggered by major mergers would predict a luminosity-dependent effect that is not seen in our data (which only span a limited range in radio luminosity) but which may well be detectable with the full Herschel-ATLAS data set. © 2010 The Authors. Journal compilation © 2010 RAS.
More details from the publisher
More details
Details from ArXiV

Measures of star formation rates from infrared (Herschel) and UV (GALEX) emissions of galaxies in the HerMES fields

Monthly Notices of the Royal Astronomical Society: Letters 409:1 (2010)

Authors:

V Buat, E Giovannoli, D Burgarella, B Altieri, A Amblard, V Arumugam, H Aussel, T Babbedge, A Blain, J Bock, A Boselli, N Castro-Rodríguez, A Cava, P Chanial, DL Clements, A Conley, L Conversi, A Cooray, CD Dowell, E Dwek, S Eales, D Elbaz, M Fox, A Franceschini, W Gear, J Glenn, M Griffin, M Halpern, E Hatziminaoglou, S Heinis, E Ibar, K Isaak, RJ Ivison, G Lagache, L Levenson, CJ Lonsdale, N Lu, S Madden, B Maffei, G Magdis, G Mainetti, L Marchetti, GE Morrison, HT Nguyen, B O'Halloran, SJ Oliver, AA Omont, FN Owen, MJ Page, M Pannella, P Panuzzo, A Papageorgiou, CP Pearson, I Pérez-Fournon, M Pohlen, D Rigopoulou, D Rizzo, IG Roseboom, M Rowan-Robinson, M Sánchez Portal, B Schulz, N Seymour, DL Shupe, AJ Smith, JA Stevens, V Strazzullo, M Symeonidis, M Trichas, KE Tugwell, M Vaccari, E Valiante, I Valtchanov, L Vigroux, L Wang, R Ward, G Wright, CK Xu, M Zemcov

Abstract:

The reliability of infrared (IR) and ultraviolet (UV) emissions to measure star formation rates (SFRs) in galaxies is investigated for a large sample of galaxies observed with the Spectral and Photometric Imaging Receiver (SPIRE) and the Photodetector Array Camera and Spectrometer (PACS) instruments on Herschel as part of the Herschel Multi-Tiered Extragalactic Survey (HerMES) project. We build flux-limited 250-jj.m samples of sources at redshift z < 1, crossmatched with the Spitzer/MIPS and GALEX catalogues. About 60 per cent of the Herschel sources are detected in UV. The total IR luminosities, LIR, of the sources are estimated using a spectral energy distribution (SED) fitting code that fits to fluxes between 24 and 500 μm. Dust attenuation is discussed on the basis of commonly used diagnostics: the LIR/LUV ratio and the slope, β, of the UV continuum. A mean dust attenuation AUV of ≃3 mag is measured in the samples. LIR/LUV LIR. Galaxies with LIR > 1011 L⊙ and 0.5 < z < 1 exhibit a mean dust attenuation AUV of about 0.7 mag lower than that found for their local counterparts, although with a large dispersion. Our galaxy samples span a large range of β and LIR/LUV values which, for the most part, are distributed between the ranges defined by the relations found locally for starburst and normal star-forming galaxies. As a consequence the recipe commonly applied to local starbursts is found to overestimate the dust attenuation correction in our galaxy sample by a factor of ~2-3. The SFRs deduced from LIR are found to account for about 90 per cent of the total SFR; this percentage drops to 71 per cent for galaxies with SFR < 1 M⊙ yr-1 (or LIR < 1010L⊙). For these faint objects, one needs to combine UV and IR emissions to obtain an accurate measure of the SFR. © 2010 The Authors. Journal compilation © 2010 RAS.
More details from the publisher
More details

On the stellar masses of IRAC detected Lyman Break Galaxies at z ∼ 3

Monthly Notices of the Royal Astronomical Society 401:3 (2010) 1521-1531

Authors:

GE Magdis, D Rigopoulou, JS Huang, GG Fazio

Abstract:

We present results of a large survey of the mid-infrared (mid-IR) properties of 248 Lyman Break Galaxies (LBGs) with confirmed spectroscopic redshift using deep Spitzer/Infrared Array Camera (IRAC) observations in six cosmological fields. By combining the new mid-IR photometry with optical and near-infrared observations, we model the spectral energy distributions (SEDs) employing a revised version of the Bruzual and Charlot synthesis population code that incorporates a new treatment of the thermal-pulsating asymptotic giant branch phase (CB07). Our primary aim is to investigate the impact of the AGB phase in the stellar masses of the LBGs, and compare our new results with previous stellar mass estimates. We investigate the stellar mass of the LBG population as a whole and assess the benefits of adding longer wavelengths to estimates of stellar masses for high-redshift galaxies. Based on the new CB07 code, we find that the stellar masses of LBGs are smaller on an average by a factor of ∼1.4 compared to previous estimates. LBGs with 8 and/or 24 μm detections show higher masses (M* ∼ 1011 M ⊙) than LBGs faint in the IRAC bands (M* ∼ 109 M⊙). The ages of these massive LBGs are considerably higher than the rest of the population, indicating that they have been star forming for at least ∼1 Gyr. We also show how the addition of the IRAC bands improves the accuracy of the estimated stellar masses and reduced the scatter on the derived mass-to-light ratios. In particular, we present a tight correlation between the 8 μm IRAC band (rest-frame K for galaxies at z ∼ 3) and the stellar mass. We calculate the number density of massive (M * > 1011 M⊙) LBGs and find it to be Φ = (1.12 ± 0.4) × 10-5 Mpc-3, ∼1.5 times lower than that found by previous studies. Finally, based on ultraviolet-corrected star formation rates (SFRs), we investigate the SFR-stellar mass correlation at z ∼ 3, find it similar to the one observed at other redshifts and show that our data place the peak of the evolution of the specific SFR at z ∼ 3. © 2009 RAS.
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 66
  • Page 67
  • Page 68
  • Page 69
  • Current page 70
  • Page 71
  • Page 72
  • Page 73
  • Page 74
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet