Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Black Hole

Lensing of space time around a black hole. At Oxford we study black holes observationally and theoretically on all size and time scales - it is some of our core work.

Credit: ALAIN RIAZUELO, IAP/UPMC/CNRS. CLICK HERE TO VIEW MORE IMAGES.

Prof. Dimitra Rigopoulou

Professor of Astrophysics

Research theme

  • Astronomy and astrophysics

Sub department

  • Astrophysics

Research groups

  • Galaxy formation and evolution
Dimitra.Rigopoulou@physics.ox.ac.uk
Telephone: 01865 (2)73296
Denys Wilkinson Building, room 75419514947
  • About
  • Publications

HerMES: Halo occupation number and bias properties of dusty galaxies from angular clustering measurements

Astronomy and Astrophysics 518:4 (2010)

Authors:

A Cooray, A Amblard, L Wang, V Arumugam, R Auld, H Aussel, T Babbedge, A Blain, J Bock, A Boselli, V Buat, D Burgarella, N Castro-Rodriguez, A Cava, P Chanial, DL Clements, A Conley, L Conversi, CD Dowell, E Dwek, S Eales, D Elbaz, D Farrah, M Fox, A Franceschini, W Gear, J Glenn, M Griffin, M Halpern, E Hatziminaoglou, E Ibar, K Isaak, RJ Ivison, AA Khostovan, G Lagache, L Levenson, N Lu, S Madden, B Maffei, G Mainetti, L Marchetti, G Marsden, K Mitchell-Wynne, AMJ Mortier, HT Nguyen, B O'Halloran, SJ Oliver, A Omont, MJ Page, P Panuzzo, A Papageorgiou, CP Pearson, I Perez Fournon, M Pohlen, JI Rawlings, G Raymond, D Rigopoulou, D Rizzo, IG Roseboom, M Rowan-Robinson, B Schulz, D Scott, P Serra, N Seymour, DL Shupe, AJ Smith, JA Stevens, M Symeonidis, M Trichas, KE Tugwell, M Vaccari, I Valtchanov, JD Vieira, L Vigroux, R Ward, G Wright, CK Xu, M Zemcov

Abstract:

We measure the angular correlation function, w(θ), from 0.5 to 30 arcmin of detected sources in two wide fields of the Herschel Multi-tiered Extragalactic Survey (HerMES). Our measurements are consistent with the expected clustering shape from a population of sources that trace the dark matter density field, including non-linear clustering at arcminute angular scales arising from multiple sources that occupy the same dark matter halos. By making use of the halo model to connect the spatial clustering of sources to the dark matter halo distribution, we estimate source bias and halo occupation number for dusty sub-mm galaxies at z ∼ 2. We find that sub-mm galaxies with 250 μm flux densities above 30 mJy reside in dark matter halos with mass above (5±4)×1012 M⊙, while (14±8)% of such sources appear as satellites in more massive halos. © ESO 2010.
More details from the publisher

HerMES: Herschel-SPIRE observations of Lyman break galaxies

Monthly Notices of the Royal Astronomical Society: Letters 409:1 (2010)

Authors:

D Rigopoulou, G Magdis, RJ Ivison, A Amblard, V Arumugam, H Aussel, A Blain, J Bock, A Boselli, V Buat, D Burgarella, N Castro-Rodríguez, A Cava, P Chanial, DL Clements, A Conley, L Conversi, A Cooray, CD Dowell, E Dwek, S Eales, D Elbaz, D Farrah, A Franceschini, J Glenn, M Griffin, M Halpern, E Hatziminaoglou, JS Huang, E Ibar, K Isaak, G Lagache, L Levenson, N Lu, S Madden, B Maffei, G Mainetti, L Marchetti, HT Nguyen, B O'Halloran, SJ Oliver, A Omont, MJ Page, P Panuzzo, A Papageorgiou, CP Pearson, I Pérez-Fournon, M Pohlen, D Rizzo, IG Roseboom, M Rowan-Robinson, B Schulz, D Scott, N Seymour, DL Shupe, AJ Smith, JA Stevens, M Symeonidis, M Trichas, KE Tugwell, M Vaccari, I Valtchanov, L Vigroux, L Wang, G Wright, CK Xu, M Zemcov

Abstract:

We present first results of a study of the submillimetre (submm) (rest-frame far-infrared) properties of z ~ 3 Lyman break galaxies (LBGs) and their lower redshift counterparts BX/BM galaxies, based on Herschel-SPIRE observations of the Northern field of the Great Observatories Origins Deep Survey (GOODS-N). We use stacking analysis to determine the properties of LBGs well below the current limit of the survey. Although LBGs are not detected individually, stacking the infrared luminous LBGs (those detected with Spitzer at 24 |xm) yields a statistically significant submm detection with mean flux 〈S250〉 = 5.9 ±1.4 mJy confirming the power of SPIRE in detecting UV-selected high-redshift galaxies at submm wavelengths. In comparison, the Spitzer 24 |j.m detected BX/BM galaxies appear fainter with a stacked value of 〈S250〉 = 2.7 ± 0.8 mJy. By fitting the spectral energy distributions (SEDs) we derive median infrared luminosities, LIR, of 2.8 × 1012 L⊙ and 1.5 × 1011 L. for z ~ 3 LBGs and BX/BMs, respectively. We find that LIR estimates derived from present measurements are in good agreement with those based on UV data for z ~ 2 BX/BM galaxies, unlike the case for z ~ 3 infrared luminous LBGs where the UV underestimates the true LIR. Although sample selection effects may influence this result we suggest that differences in physical properties (such as morphologies, dust distribution and extent of star-forming regions) between z ~ 3 LBGs and z ~ 2 BX/BMs may also play a significant role. © 2010 The Authors. Journal compilation © 2010 RAS.
More details from the publisher
More details

HerMES: SPIRE detection of high-redshift massive compact galaxies in GOODS-N field

Monthly Notices of the Royal Astronomical Society: Letters 409:1 (2010)

Authors:

A Cava, G Rodighiero, I Pérez-Fournon, F Buitrago, I Trujillo, B Altieri, A Amblard, R Auld, J Bock, D Brisbin, D Burgarella, N Castro-Rodríguez, P Chanial, M Cirasuolo, DL Clements, CJ Conselice, A Cooray, S Eales, D Elbaz, P Ferrero, A Franceschini, J Glenn, EG González Solares, M Griffin, E Ibar, RJ Ivison, L Marchetti, GE Morrison, AMJ Mortier, SJ Oliver, MJ Page, A Papageorgiou, CP Pearson, M Pohlen, JI Rawlings, G Raymond, D Rigopoulou, IG Roseboom, M Rowan-Robinson, D Scott, N Seymour, AJ Smith, M Symeonidis, KE Tugwell, M Vaccari, I Valtchanov, JD Vieira, L Vigroux, L Wang, G Wright

Abstract:

Wehave analysed the rest-frame far-infrared properties ofa sample of massive (M* > 1011 M⊙) galaxies at 2 ≲ z ≲ 3 in the Great Observatories Origins Deep Survey-North (GOODS-N) field using the Spectral and Photometric Imaging Receiver (SPIRE) instrument aboard the Herschel Space Observatory. To conduct this analysis we take advantage of the data from the Herschel Multi-tiered Extragalactic Survey (HerMES) key programme. The sample comprises 45 massive galaxies with structural parameters characterized with HST NICMOS-3. We study detections at submm Herschel bands, together with Spitzer 24-μm data, as a function of the morphological type, mass and size. We find that 26/45 sources are detected at MIPS 24 μm and 15/45 (all MIPS 24-μm detections) are detected at SPIRE 250 μ with disc-like galaxies more easily detected. We derive star formation rates (SFRs) and specific star formation rates (sSFRs) by fitting the spectral energy distribution of our sources, taking into account non-detections for SPIRE and systematic effects for MIPS derived quantities. We find that the mean SFR for the spheroidal galaxies (~50-100M⊙ yr-1) is substantially (a factor ~3) lower than the mean value presented by disc-like galaxies (~250-300M⊙ yr-1). © 2010 The Authors. Journal compilation © 2010 RAS.
More details from the publisher
More details

HerMES: The SPIRE confusion limit

Astronomy and Astrophysics 518:8 (2010)

Authors:

HT Nguyen, B Schulz, L Levenson, A Amblard, V Arumugam, H Aussel, T Babbedge, A Blain, J Bock, A Boselli, V Buat, N Castro-Rodriguez, A Cava, P Chanial, E Chapin, DL Clements, A Conley, L Conversi, A Cooray, CD Dowell, E Dwek, S Eales, D Elbaz, M Fox, A Franceschini, W Gear, J Glenn, M Griffin, M Halpern, E Hatziminaoglou, E Ibar, K Isaak, RJ Ivison, G Lagache, N Lu, S Madden, B Maffei, G Mainetti, L Marchetti, G Marsden, J Marshall, B O'Halloran, SJ Oliver, A Omont, MJ Page, P Panuzzo, A Papageorgiou, CP Pearson, I Perez Fournon, M Pohlen, N Rangwala, D Rigopoulou, D Rizzo, IG Roseboom, M Rowan-Robinson, D Scott, N Seymour, DL Shupe, AJ Smith, JA Stevens, M Symeonidis, M Trichas, KE Tugwell, M Vaccari, I Valtchanov, L Vigroux, L Wang, R Ward, D Wiebe, G Wright, CK Xu, M Zemcov

Abstract:

We report on the sensitivity of SPIRE photometers on the Herschel Space Observatory. Specifically, we measure the confusion noise from observations taken during the science demonstration phase of the Herschel Multi-tiered Extragalactic Survey. Confusion noise is defined to be the spatial variation of the sky intensity in the limit of infinite integration time, and is found to be consistent among the different fields in our survey at the level of 5.8, 6.3 and 6.8 mJy/beam at 250, 350 and 500 μm, respectively. These results, together with the measured instrument noise, may be used to estimate the integration time required for confusion limited maps, and provide a noise estimate for maps obtained by SPIRE. © 2010 ESO.
More details from the publisher

Herschel reveals a Tdust-unbiased selection of z~ 2 ultraluminous infrared galaxies

Monthly Notices of the Royal Astronomical Society 409:1 (2010) 22-28

Authors:

GE Magdis, D Elbaz, HS Hwang, A Amblard, V Arumugam, H Aussel, A Blain, J Bock, A Boselli, V Buat, N Castro-Rodríguez, A Cava, P Chanial, DL Clements, A Conley, L Conversi, A Cooray, CD Dowell, E Dwek, S Eales, D Farrah, A Franceschini, J Glenn, M Griffin, M Halpern, E Hatziminaoglou, J Huang, E Ibar, K Isaak, E Le Floc'h, G Lagache, L Levenson, CJ Lonsdale, N Lu, S Madden, B Maffei, G Mainetti, L Marchetti, GE Morrison, HT Nguyen, B O'Halloran, SJ Oliver, A Omont, FN Owen, MJ Page, M Pannella, P Panuzzo, A Papageorgiou, CP Pearson, I Pérez-Fournon, M Pohlen, D Rigopoulou, D Rizzo, IG Roseboom, M Rowan-Robinson, B Schulz, D Scott, N Seymour, DL Shupe, AJ Smith, JA Stevens, V Strazzullo, M Symeonidis, M Trichas, KE Tugwell, M Vaccari, I Valtchanov, L Vigroux, L Wang, G Wright, CK Xu, M Zemcov

Abstract:

Using Herschel Photodetector Array Camera (PACS) and Spectral and Photometric Imaging Receiver (SPIRE) observations of Lockman Hole-North and Great Observatories Origins Deep Survey-North (GOODS-N) as part of the Herschel Multi-tiered Extragalactic Survey (HerMES) project, we explore the far-infrared (IR) properties of a sample of mid-IR-selected starburst-dominated ultraluminous infrared galaxies (ULIRGs) at z~ 2. The selection of the sample is based on the detection of the stellar bump that appears in the spectral energy distribution of star-forming galaxies at 1.6 μm. We derive robust estimates of infrared luminosities (LIR) and dust temperatures (Td) of the population and find that while the luminosities in our sample span less than an order of magnitude (12.24 ≤ log(LIR/L·) ≤ 12.94), they cover a wide range of dust temperatures (25 ≤Td≤ 62 K). Galaxies in our sample range from those that are as cold as high-z submillimetre galaxies (SMGs) to those that are as warm as optically faint radio galaxies (OFRGs) and local ULIRGs. Nevertheless, our sample has median Td= 42.3 K, filling the gap between SMGs and OFRGs, bridging the two populations. We demonstrate that a significant fraction of our sample would be missed from ground-based (sub)mm surveys (850-1200 μm), showing that the latter introduce a bias towards the detection of colder sources. We conclude that Herschel observations confirm the existence of high-z ULIRGs warmer than SMGs, show that the mid-IR selection of high-z ULIRGs is not Td dependent, reveal a large dispersion in Td of high-z ULIRGs and provide the means to characterize the bulk of the ULIRG population, free from selection biases introduced by ground-based (sub)mm surveys. © 2010 The Authors. Journal compilation © 2010 RAS.
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 64
  • Page 65
  • Page 66
  • Page 67
  • Current page 68
  • Page 69
  • Page 70
  • Page 71
  • Page 72
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet