The European Large Area ISO Survey - VIII. 90-μm final analysis and source counts
Monthly Notices of the Royal Astronomical Society 354:3 (2004) 924-934
Abstract:
We present a re-analysis of the European Large Area Infrared Space Observatory (ISO) Survey (ELAIS) 90-μm observations carried out with ISOPHOT, an instrument on board the ISO of the European Space Agency. With more than 12 deg2, the ELAIS survey is the largest area covered by ISO in a single programme and is about one order of magnitude deeper than the IRAS 100-μm survey. The data analysis is presented and was mainly performed with the PHOT interactive analysis software but using the pairwise method of Stickel et al. for signal processing from edited raw data to signal per chopper plateau. The ELAIS 90-μm catalogue contains 237 reliable sources with fluxes larger than 70 mJy and is available in the electronic version of this article. Number counts are presented and show an excess above the no-evolution model prediction. This confirms the strong evolution detected at shorter (15 μm) and longer (170 μm) wavelengths in other ISO surveys. The ELAIS counts are in agreement with previous works at 90 μm and in particular with the deeper counts extracted from the Lockman hole observations. Comparison with recent evolutionary models show that the models of Franceschini et al. and Guiderdoni et al. (which includes a heavily extinguished population of galaxies) give the best fit to the data. Deeper observations are nevertheless required to discriminate better between the model predictions in the far-infrared, and are scheduled with the Spitzer Space Telescope, which has already started operating, and will also be performed by ASTRO-F.The European Large Area ISO Survey VIII: 90-micron final analysis and source counts
(2004)
Extremely red objects in the Lockman hole
Astrophysical Journal, Supplement Series 154:1 (2004) 107-111
Abstract:
We investigate extremely red objects (EROs) using near- and mid-infrared observations in five passbands (3.6 to 24 μm) obtained from the Spitzer Space Telescope, and deep ground-based R and K imaging. The great sensitivity of the Infrared Array Camera (IRAC) camera allows us to detect 64 EROs (a surface density of 2.90 ± 0.36 arcmin-2; [3.6]AB < 23.7) in only 12 minutes of IRAC exposure time, by means of an R - [3.6] color cut (analogous to the traditional red R - K cut). A pure infrared K - [3.6] red cut detects a somewhat different population and may be more effective at selecting z > 1.3 EROs. We find ∼17% of all galaxies detected by IRAC at 3.6 or 4.5 μm to be EROs. These percentages rise to about 40% at 5.8 μm, and about 60% at 8.0 μm. We utilize the spectral bump at 1.6 μm to divide the EROs into broad redshift slices using only near-infrared colors (2.2/3.6/4.5 μm). We conclude that two-thirds of all EROs lie at redshift z > 1.3. Detections at 24 μm imply that at least 11% of 0.6 < z < 1.3 EROs and at least 22% of z > 1.3 EROs are dusty star-forming galaxies.Infrared array camera (IRAC) imaging of the Lockman Hole
Astrophysical Journal, Supplement Series 154:1 (2004) 44-47