Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Atomic and Laser Physics
Credit: Jack Hobhouse

Professor Steven Rose

Visiting Professor

Research theme

  • Lasers and high energy density science

Sub department

  • Atomic and Laser Physics

Research groups

  • Oxford Centre for High Energy Density Science (OxCHEDS)
Steven.Rose@physics.ox.ac.uk
Imperial College London webpage
  • About
  • Publications

Radiation transfer in cylindrical, toroidal and hemi-ellipsoidal plasmas

Journal of Quantitative Spectroscopy and Radiative Transfer Elsevier BV (2019)

Authors:

G Pérez-Callejo, JS Wark, SJ Rose
More details from the publisher
Details from ORA
More details

The blind implosion-maker: Automated inertial confinement fusion experiment design

Physics of Plasmas AIP Publishing 26:6 (2019) 062706

Authors:

Peter W Hatfield, Steven Rose, R Scott

Abstract:

The design of inertial confinement fusion (ICF) experiments, alongside improving the development of energy density physics theory and experimental methods, is one of the key challenges in the quest for nuclear fusion as a viable energy source [O. A. Hurricane, J. Phys.: Conf. Ser. 717, 012005 (2016)]. Recent challenges in achieving a high-yield implosion at the National Ignition Facility (NIF) have led to new interest in considering a much wider design parameter space than normally studied [J. L. Peterson et al., Phys. Plasmas 24, 032702 (2017)]. Here, we report an algorithmic approach that can produce reasonable ICF designs with minimal assumptions. In particular, we use the genetic algorithm metaheuristic, in which “populations” of implosions are simulated, the design of the capsule is described by a “genome,” natural selection removes poor designs, high quality designs are “mated” with each other based on their yield, and designs undergo “mutations” to introduce new ideas. We show that it takes ∼5 × 104 simulations for the algorithm to find an original NIF design. We also link this method to other parts of the design process and look toward a completely automated ICF experiment design process—changing ICF from an experiment design problem to an algorithm design problem.
More details from the publisher
Details from ORA
More details
Details from ArXiV

Observing thermal Schwinger pair production

Physical Review A American Physical Society (APS) 99:5 (2019) 052120

Authors:

Oliver Gould, Stuart Mangles, Arttu Rajantie, Steven Rose, Cheng Xie
More details from the publisher
Details from ORA
More details

A proposal to measure iron opacity at conditions close to the solar convective zone-radiative zone boundary

High Energy Density Physics Elsevier BV (2019)

Authors:

DJ Hoarty, J Morton, M Jeffery, LK Pattison, A Wardlow, SPD Mangles, SJ Rose, C Iglesias, K Opachich, RF Heeter, TS Perry
More details from the publisher
Details from ORA
More details

The use of geometric effects in diagnosing ion density in ICF-related dot spectroscopy experiments

High Energy Density Physics Elsevier 30 (2019) 45-51

Authors:

Gabriel Perez-Callejo, D Liedahl, M Schneider, Steven Rose, Justin Wark

Abstract:

We describe a method to calculate the ion density of High Energy Density (HED) cylindrical plasmas used in Dot Spectroscopy experiments. This method requires only spectroscopic measurements of the Heα region obtained from two views (Face-on and Side-on). We make use of the fact that the geometry of the plasma affects the observed flux of optically thick lines. The ion density can be derived from the aspect ratio (height-to-radius) of the cylinder and the optical depth of the Heα-y line (1s2p 3P1 → 1s 2 1S0). The aspect ratio and the optical depth of the y line are obtained from the spectra using ratios measured from the two directions of emission of the optically thick Heα-w line (1s2p 1P1 → 1s 2 1S0) and the ratio of the optically thick to thin lines. The method can be applied to mid-Z elements at ion densities of 1019 − 1020 cm−3 and temperatures of a the order of keV, which is a relevant regime for Inertial Confinement Fusion (ICF) experiments.
More details from the publisher
Details from ORA
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 6
  • Page 7
  • Page 8
  • Page 9
  • Current page 10
  • Page 11
  • Page 12
  • Page 13
  • Page 14
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet