Biophotonics: A Nanophotonic Structure Containing Living Photosynthetic Bacteria (Small 38/2017)
Small Wiley 13:38 (2017)
Optical fabrication and characterisation of SU-8 disk photonic waveguide heterostructure cavities.
Optics express 25:20 (2017) 24615-24622
Abstract:
In order to demonstrate cavity quantum electrodynamics using photonic crystal (PhC) cavities fabricated around self-assembled quantum dots (QDs), reliable spectral and spatial overlap between the cavity mode and the quantum dot is required. We present a method for using photoresist to optically fabricate heterostructure cavities in a PhC waveguide with a combined photolithography and micro-photoluminescence spectroscopy system. The system can identify single QDs with a spatial precision of ±25 nm, and we confirm the creation of high quality factor cavity modes deterministically placed with the same spatial precision. This method offers a promising route towards bright, on-chip single photon sources for quantum information applications.Deterministic optical polarisation in nitride quantum dots at thermoelectrically cooled temperatures.
Scientific reports 7:1 (2017) 12067-12067
Abstract:
We report the successful realisation of intrinsic optical polarisation control by growth, in solid-state quantum dots in the thermoelectrically cooled temperature regime (≥200 K), using a non-polar InGaN system. With statistically significant experimental data from cryogenic to high temperatures, we show that the average polarisation degree of such a system remains constant at around 0.90, below 100 K, and decreases very slowly at higher temperatures until reaching 0.77 at 200 K, with an unchanged polarisation axis determined by the material crystallography. A combination of Fermi-Dirac statistics and k·p theory with consideration of quantum dot anisotropy allows us to elucidate the origin of the robust, almost temperature-insensitive polarisation properties of this system from a fundamental perspective, producing results in very good agreement with the experimental findings. This work demonstrates that optical polarisation control can be achieved in solid-state quantum dots at thermoelectrically cooled temperatures, thereby opening the possibility of polarisation-based quantum dot applications in on-chip conditions.Organic molecule fluorescence as an experimental test-bed for quantum jumps in thermodynamics.
Proceedings. Mathematical, physical, and engineering sciences 473:2204 (2017) 20170099-20170099
Abstract:
We demonstrate with an experiment how molecules are a natural test bed for probing fundamental quantum thermodynamics. Single-molecule spectroscopy has undergone transformative change in the past decade with the advent of techniques permitting individual molecules to be distinguished and probed. We demonstrate that the quantum Jarzynski equality for heat is satisfied in this set-up by considering the time-resolved emission spectrum of organic molecules as arising from quantum jumps between states. This relates the heat dissipated into the environment to the free energy difference between the initial and final state. We demonstrate also how utilizing the quantum Jarzynski equality allows for the detection of energy shifts within a molecule, beyond the relative shift.A nanophotonic structure containing living photosynthetic bacteria
Small Wiley‐VCH Verlag 13:38 (2017) 1701777