Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Insertion of STC into TRT at the Department of Physics, Oxford
Credit: CERN

Dr Suzie Sheehy

Visiting Lecture in Particle Physics

Research theme

  • Accelerator physics

Sub department

  • Particle Physics
suzie.sheehy@physics.ox.ac.uk
Telephone: 01865 (2)73937
Denys Wilkinson Building
Professional Website
  • About
  • Publications

Design of a large energy acceptance beamline using fixed field accelerator optics

Physical Review Accelerators and Beams American Physical Society (APS) 27:7 (2024) 071601

Authors:

AF Steinberg, RB Appleby, JSL Yap, SL Sheehy
More details from the publisher
More details

Creating exact multipolar fields with azimuthally modulated rf cavities

Physical Review Accelerators and Beams American Physical Society (APS) 25:6 (2022) 062001

Authors:

LM Wroe, SL Sheehy, RJ Apsimon
More details from the publisher
More details

A study of coherent and incoherent resonances in high intensity beams using a linear Paul trap

New Journal of Physics IOP Publishing 21 (2019)

Authors:

Lucy Martin, Shinji Machida, David Kelliher, Suzie Sheehy

Abstract:

In this paper we present a quantitative measurement of the change in frequency (tune) with intensity of four transverse resonances in a high intensity Gaussian beam. Due to the non-linear space charge forces present in high intensity beams, particle motion cannot be analytically described. Instead we use the Simulator of Particle Orbit Dynamics (S-POD) and the Intense Beam Experiment (IBEX), two linear Paul traps, to experimentally replicate the system. In high intensity beams a coherent resonant response to both space charge and external field driven perturbations is possible, these coherent resonances are excited at a tune that differs by a factor $C_{m}$ from that of the incoherent resonance. By increasing the number of ions stored in the linear Paul trap and studying the location of four different resonances we extract provisional values describing the change in tune of the resonance with intensity. These values are then compared to the $C_{m}$ factors for coherent resonances. We find that the $C_{m}$ factors do not accurately predict the location of resonances in high intensity Gaussian beams. Further insight into the experiment is gained through simulation using Warp, a particle-in-cell code.
More details from the publisher
More details
Details from ArXiV

Developing innovative, robust and affordable medical linear accelerators for challenging environments

Clinical Oncology Elsevier 31:6 (2019) 352-355

Authors:

M Dosanjh, A Aggarwal, D Pistenmaa, E Amankwaa-Frempong, D Angal-Kalinin, S Boogert, D Brown, M Carlone, P Collier, L Court, A Di Meglio, J Van Dyk, S Grover, DA Jaffray, C Jamieson, J Khader, Ivan Konoplev, H Makwani, P McIntosh, B Militsyn, J Palta, S Sheehy, SC Aruah, I Syratchev, E Zubizarreta, CN Coleman

Abstract:

The annual global incidence of cancer is projected to rise in 2035 to 25 million cases (13 million deaths), with 70% occurring in low- and middle-income countries (LMICs), where there is a severe shortfall in the availability of radiotherapy [1] – an essential component of overall curative and palliative cancer care. A 2015 report by the Global Task Force on Radiotherapy for Cancer Control estimated that by 2035 at least 5000 additional megavolt treatment machines would be needed to meet LMIC demands, together with about 30 000 radiation oncologists, 22 000 medical physicists and 80 000 radiation therapy technologists [2]. Among the main reasons for the shortfall identified in the workshop and thoroughly discussed in the Clinical Oncology special issue on radiotherapy in LMICs [3] are: (i) the initial cost of linear accelerators, (ii) the cost of service on the machines and (iii) a shortage of trained personnel needed to deliver safe, effective and high-quality treatment. A number of authors who contributed to the Clinical Oncology special issue are participating in the CERN, International Cancer Expert Corps (ICEC), Science and Technology Facilities Council (STFC) collaborative effort described in this editorial (Aggarwal, Coleman, Court, Grover, Palta, Van Dyk and Zubizarreta).
More details from the publisher
Details from ORA
More details
More details

A new method to measure the beta function in a Paul trap

Joint Accelerator Conferences Website Joint Accelerator Conferences Website (2018) 3262-3265

Authors:

Lucy Martin, K Ito, DJ Kelliher, S Machida, H Okamoto, Suzanne Sheehy

Abstract:

The Simulator of Particle Orbit Dynamics (S-POD) is a linear Paul trap at Hiroshima University, Japan, used to study beam physics. S-POD has so far been used to study resonances in high intensity beams, predominantly using a simple alternating gradient lattice configuration. Recently a similar apparatus, the Intense Beam Experiment (IBEX), has been constructed at the Rutherford Appleton Lab in the UK. To use either of these experiments to study beam dynamics in more complex lattice configurations in the future, further diagnostic techniques must be developed for Paul traps. Here we describe a new method to measure the beta function and emittance in a Paul trap.
More details from the publisher
Details from ORA
More details

Pagination

  • Current page 1
  • Page 2
  • Page 3
  • Page 4
  • Page 5
  • Page 6
  • Page 7
  • Page 8
  • Page 9
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet