Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Insertion of STC into TRT at the Department of Physics, Oxford
Credit: CERN

Dr Suzie Sheehy

Visiting Lecture in Particle Physics

Research theme

  • Accelerator physics

Sub department

  • Particle Physics
suzie.sheehy@physics.ox.ac.uk
Telephone: 01865 (2)73937
Denys Wilkinson Building
Professional Website
  • About
  • Publications

Developing innovative, robust and affordable medical linear accelerators for challenging environments

Clinical Oncology Elsevier 31:6 (2019) 352-355

Authors:

M Dosanjh, A Aggarwal, D Pistenmaa, E Amankwaa-Frempong, D Angal-Kalinin, S Boogert, D Brown, M Carlone, P Collier, L Court, A Di Meglio, J Van Dyk, S Grover, DA Jaffray, C Jamieson, J Khader, Ivan Konoplev, H Makwani, P McIntosh, B Militsyn, J Palta, S Sheehy, SC Aruah, I Syratchev, E Zubizarreta, CN Coleman

Abstract:

The annual global incidence of cancer is projected to rise in 2035 to 25 million cases (13 million deaths), with 70% occurring in low- and middle-income countries (LMICs), where there is a severe shortfall in the availability of radiotherapy [1] – an essential component of overall curative and palliative cancer care. A 2015 report by the Global Task Force on Radiotherapy for Cancer Control estimated that by 2035 at least 5000 additional megavolt treatment machines would be needed to meet LMIC demands, together with about 30 000 radiation oncologists, 22 000 medical physicists and 80 000 radiation therapy technologists [2]. Among the main reasons for the shortfall identified in the workshop and thoroughly discussed in the Clinical Oncology special issue on radiotherapy in LMICs [3] are: (i) the initial cost of linear accelerators, (ii) the cost of service on the machines and (iii) a shortage of trained personnel needed to deliver safe, effective and high-quality treatment. A number of authors who contributed to the Clinical Oncology special issue are participating in the CERN, International Cancer Expert Corps (ICEC), Science and Technology Facilities Council (STFC) collaborative effort described in this editorial (Aggarwal, Coleman, Court, Grover, Palta, Van Dyk and Zubizarreta).
More details from the publisher
Details from ORA
More details
More details

A new method to measure the beta function in a Paul trap

Joint Accelerator Conferences Website Joint Accelerator Conferences Website (2018) 3262-3265

Authors:

Lucy Martin, K Ito, DJ Kelliher, S Machida, H Okamoto, Suzanne Sheehy

Abstract:

The Simulator of Particle Orbit Dynamics (S-POD) is a linear Paul trap at Hiroshima University, Japan, used to study beam physics. S-POD has so far been used to study resonances in high intensity beams, predominantly using a simple alternating gradient lattice configuration. Recently a similar apparatus, the Intense Beam Experiment (IBEX), has been constructed at the Rutherford Appleton Lab in the UK. To use either of these experiments to study beam dynamics in more complex lattice configurations in the future, further diagnostic techniques must be developed for Paul traps. Here we describe a new method to measure the beta function and emittance in a Paul trap.
More details from the publisher
Details from ORA
More details

Commissioning and first results of the IBEX Paul Trap

Journal of Physics: Conference Series Institute of Physics 874 (2017) 012067

Authors:

Suzanne Sheehy, Elizabeth J Carr, Lucy K Martin, Karol Budzik, David J Kelliher, Shinji Machida, Chris R Prior

Abstract:

The Intense Beam Experiment (IBEX) is a linear Paul trap designed to replicate the dynamics of intense particle beams in accelerators. Similar to the S-POD apparatus at Hiroshima University, IBEX is a small scale experiment which has been constructed and recently commissioned at the STFC Rutherford Appleton Laboratory in the UK. The aim of the experiment is to support theoretical studies of next-generation high intensity proton and ion accelerators, complementing existing computer simulation approaches. Here we report on the status of commissioning and first results obtained.
More details from the publisher
Details from ORA
More details

Fixed field alternating gradient accelerators

Proceedings of the CAS-CERN Accelerator School on Accelerators for Medical Applications CERN 2017 (2017) 321-335

Abstract:

These notes provide an overview of Fixed-Field Alternating-Gradient (FFAG) accelerators for medical applications. We begin with a review of the basic principles of this type of accelerator, including the scaling and non-scaling types, highlighting beam dynamics issues that are of relevance to hadron accelerators. The potential of FFAG accelerators in the field of hadron therapy is discussed in detail, including an overview of existing medical FFAG designs. The options for FFAG treatment gantries are also considered.
More details from the publisher
Details from ORA
Details from ArXiV

Characterization techniques for fixed-field alternating gradient accelerators and beam studies using the KURRI 150 MeV proton FFAG

Progress of Theoretical and Experimental Physics Oxford University Press (2016)

Authors:

Suzanne Sheehy, DJ Kelliher, S Machida, C Rogers, CR Prior, L Volat, M Haj Tahar, Y Ishi, Y Kuriyama, M Sakamoto, T Uesugi, Y Mori

Abstract:

In this paper we describe the methods and tools used to characterize a 150 MeV proton scaling Fixed Field Alternating Gradient (FFAG) accelerator at Kyoto University Research Reactor Institute. Many of the techniques used are unique to this class of machine and are thus of relevance to any future FFAG accelerator. For the first time we detail systematic studies under- taken to improve the beam quality of the FFAG. The control of beam quality in this manner is crucial to demonstrating high power operation of FFAG accelerators in future.
More details from the publisher
Details from ORA
More details
Details from ArXiV

Pagination

  • First page First
  • Previous page Prev
  • Page 1
  • Current page 2
  • Page 3
  • Page 4
  • Page 5
  • Page 6
  • Page 7
  • Page 8
  • Page 9
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Giving to Physics
  • Current students
  • Staff intranet