Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
  • Support
Menu
Theoretical physicists working at a blackboard collaboration pod in the Beecroft building.
Credit: Jack Hobhouse

Steve Simon

Professorial Research Fellow and Professorial Fellow of Somerville College

Sub department

  • Rudolf Peierls Centre for Theoretical Physics

Research groups

  • Condensed Matter Theory
steven.simon@physics.ox.ac.uk
Telephone: 01865 (2)73954
Rudolf Peierls Centre for Theoretical Physics, room 70.06
  • About
  • Publications

Mechanism of exciton emission ring pattern in doped quantum wells

Physica Status Solidi C: Conferences 1:6 (2004) 655-660

Authors:

R Rapaport, G Chen, D Snoke, SH Simon, L Pfeiffer, K West, Y Liu, S Denev

MIMO capacity through correlated channels in the presence of correlated interferers and noise: A (not so) large N analysis

IEEE Transactions on Information Theory 49:10 (2003) 2545-2561

Authors:

AL Moustakas, SH Simon, AM Sengupta

Abstract:

The use of multiple-antenna arrays in both transmission and reception promises huge increases in the throughput of wireless communication systems. It is therefore important to analyze the capacities of such systems in realistic situations, which may include spatially correlated channels and correlated noise, as well as correlated interferers with known channel at the receiver. Here, we present an approach that provides analytic expressions for the statistics, i.e., the moments of the distribution, of the mutual information of multiple-antenna systems with arbitrary correlations, interferers, and noise. We assume that the channels of the signal and the interference are Gaussian with arbitrary covariance. Although this method is valid formally for large antenna numbers, it produces extremely accurate results even for arrays with as few as two or three antennas. We also develop a method to analytically optimize over the input signal covariance, which enables us to calculate analytic capacities when the transmitter has knowledge of the statistics of the channel (i.e., the channel covariance). In many cases of interest, this capacity is very close to the full closed-loop capacity, in which the transmitter has instantaneous channel knowledge. We apply this analytic approach to a number of examples and we compare our results with simulations to establish the validity of this approach. This method provides a simple tool to analyze the statistics of throughput for arrays of any size. The emphasis of this paper is on elucidating the novel mathematical methods used.
More details from the publisher
More details

Optimizing multiple-input single-output (MISO) communication systems with general Gaussian channels: Nontrivial covariance and nonzero mean

IEEE Transactions on Information Theory 49:10 (2003) 2770-2780

Authors:

AL Moustakas, SH Simon

Abstract:

In this correspondence, we consider a narrow-band point-to-point communication system with many (input) transmitters and a single (output) receiver (i.e., a multiple-input single output (MISO) system). We assume the receiver has perfect knowledge of the channel but the transmitter only knows the channel distribution. We focus on two canonical classes of Gaussian channel models: a) the channel has zero mean with a fixed covariance matrix and b) the channel has nonzero mean with covariance matrix proportional to the identity. In both cases, we are able to derive simple analytic expressions for the ergodic average and the cumulative distribution function (cdf) of the mutual information for arbitrary input (transmission) signal covariance. With minimal numerical effort, we then determine the ergodic and outage capacities and the corresponding capacity-achieving input signal covariances. Interestingly, we find that the optimal signal covariances for the ergodic and outage cases have very different behavior. In particular, under certain conditions, the outage capacity optimal covariance is a discontinuous function of the parameters describing the channel (such as strength of the correlations or the nonzero mean of the channel).
More details from the publisher
More details

Coexistence of composite bosons and composite fermions in nu = 1/2 + 1/2 quantum Hall bilayers.

Phys Rev Lett 91:4 (2003) 046803

Authors:

Steven H Simon, EH Rezayi, Milica V Milovanovic

Abstract:

In bilayer quantum Hall systems at filling fractions near nu=1/2+1/2, as the spacing d between the layers is continuously decreased, intralayer correlations must be replaced by interlayer correlations, and the composite fermion (CF) Fermi seas at large d must eventually be replaced by a composite boson (CB) condensate or "111 state" at small d. We propose a scenario where CBs and CFs coexist in two interpenetrating fluids in the transition. Trial wave functions describing these mixed CB-CF states compare very favorably with exact diagonalization results. A Chern-Simons transport theory is constructed that is compatible with experiment.
More details from the publisher
More details

Conductivity of Paired Composite Fermions

Physical Review Letters 91:4 (2003)

Authors:

KC Foster, NE Bonesteel, SH Simon

Abstract:

We develop a phenomenological description of the [Formula presented] quantum Hall state in which the Halperin-Lee-Read theory of the half-filled Landau level is combined with a [Formula presented]-wave pairing interaction between composite fermions (CFs). The electromagnetic response functions for the resulting mean-field superconducting state of the CFs are calculated and used in an RPA calculation of the [Formula presented] and [Formula presented] dependent longitudinal conductivity of the physical electrons, a quantity which can be measured experimentally. © 2003 The American Physical Society.
More details from the publisher
More details
More details

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 62
  • Page 63
  • Page 64
  • Page 65
  • Current page 66
  • Page 67
  • Page 68
  • Page 69
  • Page 70
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Giving to Physics
  • Current students
  • Staff intranet