The mobility of electrons in simple insulating fluids as a percolation problem
Semiclassical percolation approach to electronic states in simple fluids
The local field distribution in a fluid
An ideal Weyl semimetal induced by magnetic exchange
Abstract:
Weyl semimetals exhibit exceptional quantum electronic transport due to the presence of topologically-protected band crossings called Weyl nodes. The nodes come in pairs with opposite chirality, but their number and location in momentum space is otherwise material specific. Following the initial discoveries there is now a need for better material realizations, ideally comprising a single pair of Weyl nodes located at or very close to the Fermi level and in an energy window free from other overlapping bands. Here we propose the layered intermetallic EuCd$_2$As$_2$ to be such a system. We show that Weyl nodes in EuCd$_2$As$_2$ are magnetically-induced via exchange coupling, emerging when the Eu spins are aligned by a small external magnetic field. The identification of EuCd$_2$As$_2$ as a model magnetic Weyl semimetal, evidenced here by ab initio calculations, photoemission spectroscopy, quantum oscillations and anomalous Hall transport measurements, opens the door to fundamental tests of Weyl physics.Double-dome unconventional superconductivity in twisted trilayer graphene
Abstract:
Graphene moiré systems are ideal environments for investigating complex phase diagrams and gaining fundamental insights into the mechanisms underlying exotic states of matter, as they permit controlled manipulation of electronic properties. Magic-angle twisted trilayer graphene (MATTG) has emerged as a key platform to explore moir´e superconductivity, owing to the robustness of its superconducting order and the displacement-field tunability of its energy bands. Recent measurements strongly suggest that superconductivity in MATTG is unconventional. Here, we report the first direct observation of double-dome superconductivity in MATTG. The temperature, magnetic field, and bias current dependence of the superconductivity of doped holes collectively show that it is significantly suppressed near moir´e filling ν∗ = −2.6, leading to a double dome in the phase diagram within a finite window of the displacement field. The temperature dependence of the normal-state resistance and the I −V curves straddling ν∗ are suggestive of a phase transition and the potentially distinct nature of superconductivity in the two domes. Hartree-Fock calculations incorporating mild strain yield an incommensurate Kekulé spiral state whose effective spin polarization peaks in the regime where superconductivity is suppressed in experiments. This allows us to draw conclusions about the normal state as well as the unconventional nature of the superconducting order parameter.