Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Theoretical physicists working at a blackboard collaboration pod in the Beecroft building.
Credit: Jack Hobhouse

Steve Simon

Professorial Research Fellow and Professorial Fellow of Somerville College

Sub department

  • Rudolf Peierls Centre for Theoretical Physics

Research groups

  • Condensed Matter Theory
steven.simon@physics.ox.ac.uk
Telephone: 01865 (2)73954
Rudolf Peierls Centre for Theoretical Physics, room 70.06
  • About
  • Publications

The mobility of electrons in simple insulating fluids as a percolation problem

The Journal of Chemical Physics AIP Publishing 94:11 (1991) 7360-7375

Authors:

Steven H Simon, Vladimir Dobrosavljević, Richard M Stratt
More details from the publisher
More details

Semiclassical percolation approach to electronic states in simple fluids

Physical Review A American Physical Society (APS) 42:10 (1990) 6278-6281

Authors:

Steven H Simon, Vladimir Dobrosavljević, Richard M Stratt
More details from the publisher
More details
More details

The local field distribution in a fluid

The Journal of Chemical Physics AIP Publishing 93:4 (1990) 2640-2657

Authors:

Steven H Simon, Vladimir Dobrosavljević, Richard M Stratt
More details from the publisher
More details

An ideal Weyl semimetal induced by magnetic exchange

Authors:

J-R Soh, FD Juan, Vergniory, NBM Schröter, MC Rahn, DY Yan, M Bristow, PA Reiss, JN Blandy, YF Guo, YG Shi, TK Kim, A McCollam, SH Simon, Y Chen, AMALIA Coldea, AT Boothroyd

Abstract:

Weyl semimetals exhibit exceptional quantum electronic transport due to the presence of topologically-protected band crossings called Weyl nodes. The nodes come in pairs with opposite chirality, but their number and location in momentum space is otherwise material specific. Following the initial discoveries there is now a need for better material realizations, ideally comprising a single pair of Weyl nodes located at or very close to the Fermi level and in an energy window free from other overlapping bands. Here we propose the layered intermetallic EuCd$_2$As$_2$ to be such a system. We show that Weyl nodes in EuCd$_2$As$_2$ are magnetically-induced via exchange coupling, emerging when the Eu spins are aligned by a small external magnetic field. The identification of EuCd$_2$As$_2$ as a model magnetic Weyl semimetal, evidenced here by ab initio calculations, photoemission spectroscopy, quantum oscillations and anomalous Hall transport measurements, opens the door to fundamental tests of Weyl physics.
More details from the publisher
More details
Details from ArXiV

Double-dome unconventional superconductivity in twisted trilayer graphene

Nature Physics Springer Nature

Authors:

Zekang Zhou, Jin Jiang, Paritosh Karnatak, Ziwei Wang, Glenn Wagner, Kenji Watanabe, Takashi Taniguch, Christian Schönenberger, Siddharth Ashok Parameswaran, Steven H Simon, Mitali Banerjee

Abstract:

Graphene moiré systems are ideal environments for investigating complex phase diagrams and gaining fundamental insights into the mechanisms underlying exotic states of matter, as they permit controlled manipulation of electronic properties. Magic-angle twisted trilayer graphene (MATTG) has emerged as a key platform to explore moir´e superconductivity, owing to the robustness of its superconducting order and the displacement-field tunability of its energy bands. Recent measurements strongly suggest that superconductivity in MATTG is unconventional. Here, we report the first direct observation of double-dome superconductivity in MATTG. The temperature, magnetic field, and bias current dependence of the superconductivity of doped holes collectively show that it is significantly suppressed near moir´e filling ν∗ = −2.6, leading to a double dome in the phase diagram within a finite window of the displacement field. The temperature dependence of the normal-state resistance and the I −V curves straddling ν∗ are suggestive of a phase transition and the potentially distinct nature of superconductivity in the two domes. Hartree-Fock calculations incorporating mild strain yield an incommensurate Kekulé spiral state whose effective spin polarization peaks in the regime where superconductivity is suppressed in experiments. This allows us to draw conclusions about the normal state as well as the unconventional nature of the superconducting order parameter.

Details from ORA

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 71
  • Page 72
  • Page 73
  • Page 74
  • Page 75
  • Page 76
  • Page 77
  • Current page 78
  • Page 79
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet