Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Black Hole

Lensing of space time around a black hole. At Oxford we study black holes observationally and theoretically on all size and time scales - it is some of our core work.

Credit: ALAIN RIAZUELO, IAP/UPMC/CNRS. CLICK HERE TO VIEW MORE IMAGES.

Adrianne Slyz

Professor of Astrophysics

Sub department

  • Astrophysics

Research groups

  • Beecroft Institute for Particle Astrophysics and Cosmology
Adrianne.Slyz@physics.ox.ac.uk
Telephone: 01865 (2)83013
Denys Wilkinson Building, room 555D
  • About
  • Publications

Beyond halo mass: quenching galaxy mass assembly at the edge of filaments

(2020)

Authors:

Hyunmi Song, Clotilde Laigle, Ho Seong Hwang, Julien Devriendt, Yohan Dubois, Katarina Kraljic, Christophe Pichon, Adrianne Slyz, Rory Smith
More details from the publisher

New methods for identifying Lyman continuum leakers and reionization-epoch analogues

Monthly Notices of the Royal Astronomical Society Oxford University Press 498:1 (2020) 164-180

Authors:

Harley Katz, Dominika Durovcikova, Taysun Kimm, Joki Rosdahl, Jeremy Blaizot, Martin G Haehnelt, Julien Devriendt, Adrianne Slyz, Richard Ellis, Nicolas Laporte

Abstract:

Identifying low-redshift galaxies that emit Lyman continuum radiation (LyC leakers) is one of the primary, indirect methods of studying galaxy formation in the epoch of reionization. However, not only has it proved challenging to identify such systems, it also remains uncertain whether the low-redshift LyC leakers are truly ‘analogues’ of the sources that reionized the Universe. Here, we use high-resolution cosmological radiation hydrodynamics simulations to examine whether simulated galaxies in the epoch of reionization share similar emission line properties to observed LyC leakers at z ∼ 3 and z ∼ 0. We find that the simulated galaxies with high LyC escape fractions (fesc) often exhibit high O32 and populate the same regions of the R23–O32 plane as z ∼ 3 LyC leakers. However, we show that viewing angle, metallicity, and ionization parameter can all impact where a galaxy resides on the O32–fesc plane. Based on emission line diagnostics and how they correlate with fesc, lower metallicity LyC leakers at z ∼ 3 appear to be good analogues of reionization-era galaxies. In contrast, local [S II]-deficient galaxies do not overlap with the simulated high-redshift LyC leakers on the S II Baldwin–Phillips–Terlevich (BPT) diagram; however, this diagnostic may still be useful for identifying leakers. We use our simulated galaxies to develop multiple new diagnostics to identify LyC leakers using infrared and nebular emission lines. We show that our model using only [C II]158 μm and [O III]88 μm can identify potential leakers from non-leakers from the local Dwarf Galaxy Survey. Finally, we apply this diagnostic to known high-redshift galaxies and find that MACS 1149_JD1 at z = 9.1 is the most likely galaxy to be actively contributing to the reionization of the Universe.
More details from the publisher
Details from ORA
More details
Details from ArXiV

The origin of low-surface-brightness galaxies in the dwarf regime

(2020)

Authors:

RA Jackson, G Martin, S Kaviraj, M Ramsøy, JEG Devriendt, T Sedgwick, C Laigle, H Choi, RS Beckmann, M Volonteri, Y Dubois, C Pichon, SK Yi, A Slyz, K Kraljic, T Kimm, S Peirani, I Baldry
More details from the publisher

Formation of compact galaxies in the Extreme-Horizon simulation

(2020)

Authors:

Solène Chabanier, Frédéric Bournaud, Yohan Dubois, Sandrine Codis, Damien Chapon, David Elbaz, Christophe Pichon, Olivier Bressand, Julien Devriendt, Raphael Gavazzi, Katarina Kraljic, Taysun Kimm, Clotilde Laigle, Jean-Baptiste Lekien, Garreth Martin, Nathalie Palanque-Delabrouille, Sébastien Peirani, Pierre-Franck Piserchia, Adrianne Slyz, Maxime Trebitsch, Christophe Yèche
More details from the publisher

Spatially offset black holes in the Horizon-AGN simulation and comparison to observations

(2020)

Authors:

Deaglan J Bartlett, Harry Desmond, Julien Devriendt, Pedro G Ferreira, Adrianne Slyz
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 11
  • Page 12
  • Page 13
  • Page 14
  • Current page 15
  • Page 16
  • Page 17
  • Page 18
  • Page 19
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet