Dual effects of ram pressure on star formation in multiphase disk galaxies with strong stellar feedback
Astrophysical Journal IOP Science 905:1 (2020) 31
Abstract:
We investigate the impact of ram pressure stripping due to the intracluster medium (ICM) on star-forming disk galaxies with a multiphase interstellar medium maintained by strong stellar feedback. We carry out radiation-hydrodynamic simulations of an isolated disk galaxy embedded in a 1011 M ⊙ dark matter halo with various ICM winds mimicking the cluster outskirts (moderate) and the central environment (strong). We find that both star formation quenching and triggering occur in ram pressure–stripped galaxies, depending on the strength of the winds. H i and H2 in the outer galactic disk are significantly stripped in the presence of moderate winds, whereas turbulent pressure provides support against ram pressure in the central region, where star formation is active. Moderate ICM winds facilitate gas collapse, increasing the total star formation rates by ~40% when the wind is oriented face-on or by ~80% when it is edge-on. In contrast, strong winds rapidly blow away neutral and molecular hydrogen gas from the galaxy, suppressing star formation by a factor of 2 within ~200 Myr. Dense gas clumps with n H gsim 10 M ⊙ pc−2 are easily identified in extraplanar regions, but no significant young stellar populations are found in such clumps. In our attempts to enhance radiative cooling by adopting a colder ICM of T = 106 K, only a few additional stars are formed in the tail region, even if the amount of newly cooled gas increases by an order of magnitude.Spatially offset black holes in the Horizon-AGN simulation and comparison to observations
Monthly Notices of the Royal Astronomical Society Oxford University Press 500:4 (2020) staa3516
Abstract:
We study the displacements between the centres of galaxies and their supermassive black holes (BHs) in the cosmological hydrodynamical simulation Horizon-AGN, and in a variety of observations from the literature. The BHs in Horizon-AGN feel a subgrid dynamical friction force, sourced by the surrounding gas, which prevents recoiling BHs being ejected from the galaxy. We find that (i) the fraction of spatially offset BHs increases with cosmic time, (ii) BHs live on prograde orbits in the plane of the galaxy with an orbital radius that decays with time but stalls near z = 0, and (iii) the magnitudes of offsets from the galaxy centres are substantially larger in the simulation than in observations. We attribute the stalling of the infall and excessive offset magnitudes to the fact that dynamical friction from stars and dark matter is not modelled in the simulation, and hence provide a way to improve the BH dynamics of future simulations.Formation of compact galaxies in the Extreme-Horizon simulation
Astronomy and Astrophysics EDP Sciences 643 (2020) L8
Abstract:
We present the Extreme-Horizon (EH) cosmological simulation, which models galaxy formation with stellar and active galactic nuclei (AGN) feedback and uses a very high resolution in the intergalactic and circumgalactic medium. Its high resolution in low-density regions results in smaller-size massive galaxies at a redshift of z = 2, which is in better agreement with observations compared to other simulations. We achieve this result thanks to the improved modeling of cold gas flows accreting onto galaxies. In addition, the EH simulation forms a population of particularly compact galaxies with stellar masses of 1010−11 M⊙ that are reminiscent of observed ultracompact galaxies at z ≃ 2. These objects form primarily through repeated major mergers of low-mass progenitors and independently of baryonic feedback mechanisms. This formation process can be missed in simulations with insufficient resolution in low-density intergalactic regions.Dual Effects of Ram Pressure on Star Formation in Multi-phase Disk Galaxies with Strong Stellar Feedback
(2020)