Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Black Hole

Lensing of space time around a black hole. At Oxford we study black holes observationally and theoretically on all size and time scales - it is some of our core work.

Credit: ALAIN RIAZUELO, IAP/UPMC/CNRS. CLICK HERE TO VIEW MORE IMAGES.

Adrianne Slyz

Professor of Astrophysics

Sub department

  • Astrophysics

Research groups

  • Beecroft Institute for Particle Astrophysics and Cosmology
Adrianne.Slyz@physics.ox.ac.uk
Telephone: 01865 (2)83013
Denys Wilkinson Building, room 555D
  • About
  • Publications

How to quench a dwarf galaxy: The impact of inhomogeneous reionization on dwarf galaxies and cosmic filaments

Monthly Notices of the Royal Astronomical Society Oxford University Press 494:2 (2020) 2200-2220

Authors:

H Katz, M Ramsoy, J Rosdahl, T Kimm, J Blaizot, Haehnelt, L Michel-Dansac, T Garel, C Laigle, JULIEN Devriendt, A Slyz

Abstract:

We use the SPHINX suite of high-resolution cosmological radiation hydrodynamics simulations to study how spatially and temporally inhomogeneous reionization impacts the baryonic content of dwarf galaxies and cosmic filaments. We compare simulations with and without stellar radiation to isolate the effects of radiation feedback from that of supernova, cosmic expansion, and numerical resolution. We find that the gas content of cosmic filaments can be reduced by more than 80 per cent following reionization. The gas inflow rates into haloes with Mvir≲108M⊙ are strongly affected and are reduced by more than an order of magnitude compared to the simulation without reionization. A significant increase in gas outflow rates is found for halo masses Mvir≲7×107M⊙⁠. Our simulations show that inflow suppression (i.e. starvation), rather than photoevaporation, is the dominant mechanism by which the baryonic content of high-redshift dwarf galaxies is regulated. At fixed redshift and halo mass, there is a large scatter in the halo baryon fractions that is entirely dictated by the timing of reionization in the local region surrounding a halo which can change by Δz ≳ 3 at fixed mass. Finally, although the gas content of high-redshift dwarf galaxies is significantly impacted by reionization, we find that most haloes with Mvir≲108M⊙ can remain self-shielded and form stars long after reionization, until their local gas reservoir is depleted, suggesting that Local Group dwarf galaxies do not necessarily exhibit star formation histories that peak prior to z = 6. Significantly larger simulation boxes will be required to capture the full process of reionization and understand how our results translate to environments not probed by our current work.
More details from the publisher
Details from ORA
More details
Details from ArXiV

Reionization history constraints from neural network based predictions of high-redshift quasar continua

Monthly Notices of the Royal Astronomical Society Oxford University Press 493:3 (2020) 4256-4275

Authors:

D Ďurovčíková, H Katz, SEI Bosman, FB Davies, J Devriendt, A Slyz

Abstract:

Observations of the early Universe suggest that reionization was complete by z ∼ 6, however, the exact history of this process is still unknown. One method for measuring the evolution of the neutral fraction throughout this epoch is via observing the Lyα damping wings of high-redshift quasars. In order to constrain the neutral fraction from quasar observations, one needs an accurate model of the quasar spectrum around Lyα, after the spectrum has been processed by its host galaxy but before it is altered by absorption and damping in the intervening IGM. In this paper, we present a novel machine learning approach, using artificial neural networks, to reconstruct quasar continua around Lyα. Our QSANNDRA algorithm improves the error in this reconstruction compared to the state-of-the-art PCA-based model in the literature by 14.2% on average, and provides an improvement of 6.1% on average when compared to an extension thereof. In comparison with the extended PCA model, QSANNDRA further achieves an improvement of 22.1% and 16.8% when evaluated on low-redshift quasars most similar to the two high-redshift quasars under consideration, ULAS J1120+0641 at z = 7.0851 and ULAS J1342+0928 at z = 7.5413, respectively. Using our more accurate reconstructions of these two z > 7 quasars, we estimate the neutral fraction of the IGM using a homogeneous reionization model and find x¯H1=0.25+0.05−0.05 at z = 7.0851 and x¯H1=0.60+0.11−0.11 at z = 7.5413. Our results are consistent with the literature and favour a rapid end to reionization.
More details from the publisher
Details from ORA
More details
Details from ArXiV

The Obelisk simulation: galaxies contribute more than AGN to HI reionization of protoclusters

(2020)

Authors:

Maxime Trebitsch, Yohan Dubois, Marta Volonteri, Hugo Pfister, Corentin Cadiou, Harley Katz, Joakim Rosdahl, Taysun Kimm, Christophe Pichon, Ricarda S Beckmann, Julien Devriendt, Adrianne Slyz

Abstract:

We present the Obelisk project, a cosmological radiation-hydrodynamics simulation following the assembly and reionization of a protocluster progenitor during the first two billions of years from the big bang, down to z = 3.5. The simulation resolves haloes down to the atomic cooling limit, and tracks the contribution of different sources of ionization: stars, active galactic nuclei, and collisions. The Obelisk project is designed specifically to study the coevolution of high redshift galaxies and quasars in an environment favouring black hole growth. In this paper, we establish the relative contribution of these two sources of radiation to reionization and their respective role in establishing and maintaining the high redshift ionizing background. Our volume is typical of an overdense region of the Universe and displays star formation rate and black hole accretion rate densities similar to high redshift protoclusters. We find that hydrogen reionization happens inside-out and is completed by z ∼ 6 in our overdensity, and is predominantly driven by galaxies, while accreting black holes only play a role at z ∼ 4.
Details from ORA
More details from the publisher
Details from ArXiV

The Obelisk simulation: galaxies contribute more than AGN to HI reionization of protoclusters

(2020)

Authors:

Maxime Trebitsch, Yohan Dubois, Marta Volonteri, Hugo Pfister, Corentin Cadiou, Harley Katz, Joakim Rosdahl, Taysun Kimm, Christophe Pichon, Ricarda S Beckmann, Julien Devriendt, Adrianne Slyz
More details from the publisher

The impact of AGN feedback on galaxy intrinsic alignments in the Horizon simulations

Monthly Notices of the Royal Astronomical Society Oxford University Press 492:3 (2020) 4268-4282

Authors:

A Soussana, NE Chisari, S Codis, RS Beckmann, Y Dubois, JULIEN Devriendt, S Peirani, C Laigle, C Pichon, A Slyz

Abstract:

The intrinsic correlations of galaxy shapes and orientations across the large-scale structure of the Universe are a known contaminant to weak gravitational lensing. They are known to be dependent on galaxy properties, such as their mass and morphologies. The complex interplay between alignments and the physical processes that drive galaxy evolution remains vastly unexplored. We assess the sensitivity of intrinsic alignments (shapes and angular momenta) to active galactic nuclei (AGN) feedback by comparing galaxy alignment in twin runs of the cosmological hydrodynamical Horizon simulation, which do and do not include AGN feedback, respectively. We measure intrinsic alignments in three dimensions and in projection at z = 0 and z = 1. We find that the projected alignment signal of all galaxies with resolved shapes with respect to the density field in the simulation is robust to AGN feedback, thus giving similar predictions for contamination to weak lensing. The relative alignment of galaxy shapes around galaxy positions is however significantly impacted, especially when considering high-mass ellipsoids. Using a sample of galaxy ‘twins’ across simulations, we determine that AGN changes both the galaxy selection and their actual alignments. Finally, we measure the alignments of angular momenta of galaxies with their nearest filament. Overall, these are more significant in the presence of AGN as a result of the higher abundance of massive pressure-supported galaxies.
More details from the publisher
Details from ORA
More details
Details from ArXiV

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 13
  • Page 14
  • Page 15
  • Page 16
  • Current page 17
  • Page 18
  • Page 19
  • Page 20
  • Page 21
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet