Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Black Hole

Lensing of space time around a black hole. At Oxford we study black holes observationally and theoretically on all size and time scales - it is some of our core work.

Credit: ALAIN RIAZUELO, IAP/UPMC/CNRS. CLICK HERE TO VIEW MORE IMAGES.

Adrianne Slyz

Professor of Astrophysics

Sub department

  • Astrophysics

Research groups

  • Beecroft Institute for Particle Astrophysics and Cosmology
Adrianne.Slyz@physics.ox.ac.uk
Telephone: 01865 (2)83013
Denys Wilkinson Building, room 555D
  • About
  • Publications

deepCool: Fast and Accurate Estimation of Cooling Rates in Irradiated Gas with Artificial Neural Networks

Authors:

TP Galligan, H Katz, T Kimm, J Rosdahl, J Blaizot, JULIEN Devriendt, A Slyz

Abstract:

Accurate models of radiative cooling are a fundamental ingredient of modern cosmological simulations. Without cooling, accreted baryons will not efficiently dissipate their energy and collapse to the centres of haloes to form stars. It is well established that local variations in the amplitude and shape of the spectral energy distribution of the radiation field can drastically alter the cooling rate. Here we introduce deepCool, deepHeat, and deepMetal: methods for accurately modelling the total cooling rates, total heating rates, and metal-line only cooling rates of irradiated gas using artificial neural networks. We train our algorithm on a high-resolution cosmological radiation hydrodynamics simulation and demonstrate that we can predict the cooling rate, as measured with the photoionisation code CLOUDY, under the influence of a local radiation field, to an accuracy of ~5%. Our method is computationally and memory efficient, making it suitable for deployment in state-of-the-art radiation hydrodynamics simulations. We show that the circumgalactic medium and diffuse gas surrounding the central regions of a galaxy are most affected by the interplay of radiation and gas, and that standard cooling functions that ignore the local radiation field can incorrectly predict the cooling rate by more than an order of magnitude, indicating that the baryon cycle in galaxies is affected by the influence of a local radiation field on the cooling rate.
Details from ArXiV

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 47
  • Page 48
  • Page 49
  • Page 50
  • Page 51
  • Page 52
  • Page 53
  • Page 54
  • Current page 55

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet