Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
Black Hole

Lensing of space time around a black hole. At Oxford we study black holes observationally and theoretically on all size and time scales - it is some of our core work.

Credit: ALAIN RIAZUELO, IAP/UPMC/CNRS. CLICK HERE TO VIEW MORE IMAGES.

Adrianne Slyz

Professor of Astrophysics

Sub department

  • Astrophysics

Research groups

  • Beecroft Institute for Particle Astrophysics and Cosmology
Adrianne.Slyz@physics.ox.ac.uk
Telephone: 01865 (2)83013
Denys Wilkinson Building, room 555D
  • About
  • Publications

Probing Cosmic Dawn: Modelling the Assembly History, SEDs, and Dust Content of Selected $z\sim9$ Galaxies

Authors:

H Katz, N Laporte, RS Ellis, JULIEN Devriendt, A Slyz

Abstract:

The presence of spectroscopically confirmed Balmer breaks in galaxy spectral energy distributions (SEDs) at $z>9$ provides one of the best probes of the assembly history of the first generations of stars in our Universe. Recent observations of the gravitationally lensed source, MACS 1149_JD1 (JD1), indicate that significant amounts of star formation likely occurred at redshifts as high as $z\simeq15$. The inferred stellar mass, dust mass, and assembly history of JD1, or any other galaxy at these redshifts that exhibits a strong Balmer break, can provide a strong test of our best theoretical models from high-resolution cosmological simulations. In this work, we present the results from a cosmological radiation-hydrodynamics simulation of the region surrounding a massive Lyman-break galaxy. For two of our most massive systems, we show that dust preferentially resides in the vicinity of the young stars thereby increasing the strength of the measured Balmer break such that the simulated SEDs are consistent with the photometry of JD1 and two other $z>9$ systems (GN-z10-3 and GN-z9-1) that have proposed Balmer breaks at high redshift. We find strong variations in the shape and luminosity of the SEDs of galaxies with nearly identical stellar and halo masses, indicating the importance of morphology, assembly history, and dust distribution in making inferences on the properties of individual galaxies at high redshifts. Our results stress the importance that dust may play in modulating the observable properties of galaxies, even at the extreme redshifts of $z>9$.
More details from the publisher
Details from ArXiV
More details

The impact of baryons on the matter power spectrum from the Horizon-AGN cosmological hydrodynamical simulation

Authors:

NE Chisari, MLA Richardson, Julien Devriendt, Y Dubois, A Schneider, AMCL Brun, RS Beckmann, S Peirani, A Slyz, C Pichon

Abstract:

Accurate cosmology from upcoming weak lensing surveys relies on knowledge of the total matter power spectrum at percent level at scales $k < 10$ $h$/Mpc, for which modelling the impact of baryonic physics is crucial. We compare measurements of the total matter power spectrum from the Horizon cosmological hydrodynamical simulations: a dark matter-only run, one with full baryonic physics, and another lacking Active Galactic Nuclei (AGN) feedback. Baryons cause a suppression of power at $k\simeq 10$ $h/$Mpc of $<15\%$ at $z=0$, and an enhancement of a factor of a few at smaller scales due to the more efficient cooling and star formation. The results are sensitive to the presence of the highest mass haloes in the simulation and the distribution of dark matter is also impacted up to a few percent. The redshift evolution of the effect is non-monotonic throughout $z=0-5$ due to an interplay between AGN feedback and gas pressure, and the growth of structure. We investigate the effectiveness of the "baryonic correction model" proposed by Schneider & Teyssier (2015) in describing our results. We require a different redshift evolution and propose an alternative fitting function with $4$ free parameters that reproduces our results within $5\%$. Compared to other simulations, we find the impact of baryonic processes on the total matter power spectrum to be smaller at $z=0$. Nevertheless, our results also suggest that AGN feedback is not strong enough in the simulation. Total matter power spectra from the Horizon simulations are made publicly available at https://www.horizon-simulation.org/catalogues.html.
More details from the publisher
Details from ArXiV
More details

deepCool: Fast and Accurate Estimation of Cooling Rates in Irradiated Gas with Artificial Neural Networks

Authors:

TP Galligan, H Katz, T Kimm, J Rosdahl, J Blaizot, JULIEN Devriendt, A Slyz

Abstract:

Accurate models of radiative cooling are a fundamental ingredient of modern cosmological simulations. Without cooling, accreted baryons will not efficiently dissipate their energy and collapse to the centres of haloes to form stars. It is well established that local variations in the amplitude and shape of the spectral energy distribution of the radiation field can drastically alter the cooling rate. Here we introduce deepCool, deepHeat, and deepMetal: methods for accurately modelling the total cooling rates, total heating rates, and metal-line only cooling rates of irradiated gas using artificial neural networks. We train our algorithm on a high-resolution cosmological radiation hydrodynamics simulation and demonstrate that we can predict the cooling rate, as measured with the photoionisation code CLOUDY, under the influence of a local radiation field, to an accuracy of ~5%. Our method is computationally and memory efficient, making it suitable for deployment in state-of-the-art radiation hydrodynamics simulations. We show that the circumgalactic medium and diffuse gas surrounding the central regions of a galaxy are most affected by the interplay of radiation and gas, and that standard cooling functions that ignore the local radiation field can incorrectly predict the cooling rate by more than an order of magnitude, indicating that the baryon cycle in galaxies is affected by the influence of a local radiation field on the cooling rate.
Details from ArXiV

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 48
  • Page 49
  • Page 50
  • Page 51
  • Page 52
  • Page 53
  • Page 54
  • Page 55
  • Current page 56

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet