Critique of charge collection efficiencies calculated through small perturbation measurements of dye sensitized solar cells
Journal of Applied Physics AIP Publishing 113:6 (2013) 063709
Enhanced electronic contacts in SnO2-dye-P3HT based solid state dye sensitized solar cells.
Phys Chem Chem Phys 15:6 (2013) 2075-2080
Abstract:
We present an investigation on the optimisation of solid-state dye sensitized solar cells (SDSCs) comprising mesoporous tin oxide photoanodes infiltrated with poly(3-hexylthiophene-2,5-diyl) (P3HT) hole conductor and sensitized with an organic dye. We chose both the SnO(2) and P3HT for their high charge carrier mobilities and conductivities, but as a result preclude conventional device configurations because of high leakage current and low shunt-resistance. To minimize the "hole leakage current" through the FTO anode, we employed a double compact layer structure, and to minimize "electron leakage current" at the silver cathode, we developed a protocol for depositing an optimal P3HT "capping layer". After optimisation of cell fabrication, the electron lifetime is increased considerably and the solar cells exhibited simulated AM1.5 full sun solar power conversion efficiencies in excess of 1%.Panchromatic "dye-doped" polymer solar cells: From femtosecond energy relays to enhanced photo-response
Journal of Physical Chemistry Letters 4:3 (2013) 442-447
Abstract:
There has been phenomenal effort synthesizing new low-band gap polymer hole-conductors which absorb into the near-infrared (NIR), leading to >10% efficient all-organic solar cells. However, organic light absorbers have relatively narrow bandwidths, making it challenging to obtain panchromatic absorption in a single organic semiconductor. Here, we demonstrate that (poly[2,6-(4,4-bis-(2-ethylhexyl)-4H-cyclopenta[2,1-b;3,4-b0]dithiophene)-alt-4, 7-(2,1,3-benzothiadia-zole)] (PCPDTBT) can be "photo-sensitized" across the whole visible spectrum by "doping" with a visible absorbing dye, the (2,2,7,7-tetrakis(3-hexyl-5-(7-(4-hexylthiophen-2-yl)benzo[c][1,2,5] thiadiazol-4-yl)thiophen-2-yl)-9,9-spirobifluorene) (spiro-TBT). Through a comprehensive sub-12 femtosecond-nanosecond spectroscopic study, we demonstrate that extremely efficient and fast energy transfer occurs from the photoexcited spiro-TBT to the PCPDTBT, and ultrafast charge injection happens when the system is interfaced with ZnO as a prototypal electron-acceptor compound. The visible photosensitization can be effectively exploited and gives panchromatic photoresponse in prototype polymer/oxide bilayer photovoltaic diodes. This concept can be successfully adopted for tuning and optimizing the light absorption and photoresponse in a broad range of polymeric and hybrid solar cells. © 2013 American Chemical Society.A one-step low temperature processing route for organolead halide perovskite solar cells
Chemical Communications Royal Society of Chemistry (RSC) 49:72 (2013) 7893-7895
Dependence of dye regeneration and charge collection on the pore-filling fraction in solid-state dye-sensitized solar cells
Advanced Functional Materials (2013)