SnO2-based dye-sensitized hybrid solar cells exhibiting near unity absorbed photon-to-electron conversion efficiency.
Nano Lett 10:4 (2010) 1259-1265
Abstract:
Improving the solar light harvesting and photon-to-electron conversion efficiency for hybrid, organic-inorganic photovoltaics are critical challenges. Titania based solid-state hybrid solar cells are moderately efficient at converting visible photons to electrons, but major electrical losses still remain. A material based paradigm shift is required to dramatically enhance the performance of these devices. Here, we present an investigation into solid-state dye-sensitized solar cells (SDSCs) incorporating a molecular hole-transporter and mesoporous tin oxide electrodes, in place of titania usually employed. We investigate the influence of treating the surface of the SnO(2) with different oxides and find that MgO "passivated" SnO(2) electrodes demonstrate an unprecedented absorbed photon-to-electron conversion efficiency of near unity across a broad spectral range. A dual surface treatment of TiO(2) followed by MgO enables tuning of the solar cell photovoltage, fill factor, and efficiency with visible light absorbing cells delivering 3% solar-to-electrical full sun power conversion efficiency.Simple approach to hybrid polymer/porous metal oxide solar cells from solution-processed ZnO nanocrystals
Journal of Physical Chemistry C 114:8 (2010) 3664-3674
Abstract:
This work is devoted to the development of hybrid bulk heterojunction solar cells based on porous zinc oxide (ZnO) electrodes and poly(3-hexylthiophene) (P3HT), using simple synthesis procedures and deposition techniques. Starting from ZnO nanocrystals with well-controlled properties, porous ZnO electrodes of suitable porosity are deposited by spin-coating, varying the main experimental parameters such as composition of the initial ZnO formulation and choice of the organic ligand. Significant charge transfer yields are observed in the corresponding solar cells, and the influence of processing conditions on device performance is investigated using conventional techniques as well as transient photovoltage/photocurrent decay measurements. The temperature used to sinter the ZnO electrode is found to be specifically crucial to ensure efficient charge transport in the device while avoiding a loss in interfacial area through nanocrystal coalescence. Using 8 × 13 nm ZnO nanorods, the best device exhibits a power conversion efficiency of 0.35% under 100 mW·cm -2 AM1.5G simulated solar emission. This strategy, using processing in air with simple deposition techniques, competes with related approaches based on nanostructured ZnO processed using more complex procedures. Moreover, device performance and photophysics are found to be greatly influenced by the morphology of the starting ZnO nanocrystals, illustrating that fine control of the inorganic component can effectively tune the performance of hybrid bulk heterojunction solar cells. © 2010 American Chemical Society.Monolithic route to efficient dye-sensitized solar cells employing diblock copolymers for mesoporous TiO2
Journal of Materials Chemistry 20:7 (2010) 1261-1268
Abstract:
We present a material and device based study on the fabrication of mesoporous TiO2 and its integration into dye-sensitized solar cells. Poly(isoprene-block-ethyleneoxide) (PI-b-PEO) copolymers were used as structure directing agents for the sol-gel based synthesis of nanoporous monolithic TiO2 which was subsequently ground down to small particles and processed into a paste. The TiO2 synthesis and the formation of tens of micrometre thick films from the paste is a scalable approach for the manufacture of dye sensitised solar cells (DSCs). In this study, we followed the self-assembly of the material through the various processing stages of DSC manufacture. Since this approach enables high annealing temperatures while maintaining porosity, excellent crystallinity was achieved. Internal TiO 2 structures ranging from the nanometre to micrometre scale combine a high internal surface area with the strong scattering of light, which results in high light absorption and an excellent full-sun power conversion efficiency of up to 6.4% in a robust, 3 μm thick dye-sensitized solar cell. © 2010 The Royal Society of Chemistry.Ultrafast terahertz conductivity dynamics in mesoporous TiO2 : Influence of dye sensitization and surface treatment in solid-state dye-sensitized solar cells
Journal of Physical Chemistry C 114:2 (2010) 1365-1371
Abstract:
We have used optical-pump terahertz-probe spectroscopy to explore the photoinduced conductivity dynamics in mesoporous anatase TiO2 films, commonly employed as the electron-transporting electrode in dye-sensitized solar cells. We find an intrinsic mobility value of 0.1 cm2/(V s) and diffusion length of ∼20 nm for electron motion through the TiO2 matrix. The photoconductivity dynamics in TiO2 films, both before and after sensitization with a ruthenium bypyridyl complex termed Z907, were examined in order to study the charge injection, trapping, and recombination time scales. We observe a biphasic charge injection from Z907, with a fast sub-500 fs component, followed by a slower 70-200 ps component. This is followed by photoconductivity decay over the first few nanoseconds, predominantly reflecting charge carrier trapping. In addition, we have utilized terahertz spectroscopy to investigate the influence of treating the titania surface with TiCl4 on early-time charge dynamics. In the solar cells, surface treatment of the mesoporous TiO2 with TiCl4 is critical to enable efficient operation. Here, we find that neither early-time charge mobility nor charge injection rate or decay times are significantly affected by the treatment, which suggests that it may, instead, have an impact on phenomena occurring on longer time scales. © 2010 American Chemical Society.Synthesis and spectroscopic characterization of solution processable highly ordered polythiophene-carbon nanotube nanohybrid structures.
Nanotechnology 21:2 (2010) 025201