Ion‐Coordinating Sensitizer in Solid‐State Hybrid Solar Cells
Angewandte Chemie Wiley 117:39 (2005) 6571-6575
Self-organization of nanocrystals in polymer brushes. Application in heterojunction photovoltaic diodes.
Nano Lett 5:9 (2005) 1653-1657
Abstract:
We present a new approach to achieving order in molecular semiconductors via alignment of polymer chains using surface-initiated polymerization. Polyacrylate brushes grown from transparent conducting electrodes, with triarylamine side groups as hole-transporting components, show characteristics of high mobilities for hole transport. Solution processing a second component with favorable enthalpic interactions can form a composite with mesoscale order and be exploited for heterojunction diodes. We find substantial uptake of CdSe nanocrystals (with diameter in the range 2.5-2.8 nm), and such composites show photovoltaic quantum efficiencies of up to 50%.Morphological and electronic consequences of modifications to the polymer anode 'PEDOT:PSS'
Polymer 46:8 (2005) 2573-2578
Abstract:
We present a microscopic and electronic investigation of the polymeric anode poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) used as an electrode in photovoltaic and single carrier diodes. PEDOT:PSS is processed from aqueous solution as a colloidal dispersion with excess PSS present. We modify the PEDOT:PSS solution by the addition of a high boiling point alcohol, glycerol, which is known to increase the conductivity of the spin-coated film. Atomic force microscopy indicates swelling and greater aggregation of the PEDOT-rich colloidal particles found in this system. Current-voltage characteristics of 'hole-transporting' diodes, formed with gold contacts, suggest less surface enrichment of PSS in the glycerol modified electrode. Through Kelvin probe microscopy, we find the surface potential of glycerol modified PEDOT:PSS decreases by approximately 0.12 eV, which we assign to a reduction in surface enrichment by PSS. Photovoltaic diodes, using a PFB:F8BT polymer blend as the photo-active layer, and glycerol modified PEDOT:PSS anodes are significantly improved as compared to those with unmodified PEDOT:PSS anodes. This is likely to be due to improved hole-injection from the active polymer film into the PEDOT:PSS anode. This emphasises the electronic consequences of the morphological reorientation of the PEDOT and PSS. © 2005 Published by Elsevier Ltd.Vertically segregated hybrid blends for photovoltaic devices with improved efficiency
Journal of Applied Physics 97:1 (2005)
Abstract:
Solution-processed photovoltaic devices based on blends of conjugated polymers and inorganic semiconductor tetrapods show high efficiencies due to the good electron transport perpendicular to the plane of the film. Here, we show that by using a high-boiling-point solvent, 1,2,4-trichlorobenzene, instead of chloroform for spin-coating, we can typically obtain a threefold increase in solar power conversion efficiency in devices based on CdSe tetrapods and the poly (p -phenylenvinylene) derivative O C1 C10 -PPV. The optimized devices show AM1.5 solar power conversion efficiencies of typically 2.1% with some devices as high as 2.8%. The results can be explained by the occurrence of vertical phase separation which leads to an optimal structure for charge collection. Evidence for this structure is obtained by environmental scanning electron microscopy, photocurrent action spectra measurements, time-resolved photoluminescence, and spectroscopic measurements of exciton dissociation and charge-carrier recombination. © 2005 American Institute of Physics.Nanostructured polymers in polymeric optoelectronic devices.
ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY 229 (2005) U1156-U1156