Identification of lead vacancy defects in lead halide perovskites.
Nature communications 12:1 (2021) 5566
Abstract:
Perovskite photovoltaics advance rapidly, but questions remain regarding point defects: while experiments have detected the presence of electrically active defects no experimentally confirmed microscopic identifications have been reported. Here we identify lead monovacancy (VPb) defects in MAPbI3 (MA = CH3NH3+) using positron annihilation lifetime spectroscopy with the aid of density functional theory. Experiments on thin film and single crystal samples all exhibited dominant positron trapping to lead vacancy defects, and a minimum defect density of ~3 × 1015 cm-3 was determined. There was also evidence of trapping at the vacancy complex [Formula: see text] in a minority of samples, but no trapping to MA-ion vacancies was observed. Our experimental results support the predictions of other first-principles studies that deep level, hole trapping, [Formula: see text], point defects are one of the most stable defects in MAPbI3. This direct detection and identification of a deep level native defect in a halide perovskite, at technologically relevant concentrations, will enable further investigation of defect driven mechanisms.Universal Current Losses in Perovskite Solar Cells Due to Mobile Ions
Advanced Energy Materials Wiley 11:34 (2021)
A polymeric bis(di- p -anisylamino)fluorene hole-transport material for stable n-i-p perovskite solar cells
New Journal of Chemistry Royal Society of Chemistry (RSC) 45:33 (2021) 15017-15021
Revealing ultrafast charge-carrier thermalization in tin-iodide perovskites through novel pump-push-probe terahertz spectroscopy
ACS Photonics American Chemical Society 8:8 (2021) 2509-2518
Abstract:
Tin-iodide perovskites are an important group of semiconductors for photovoltaic applications, promising higher intrinsic charge-carrier mobilities and lower toxicity than their lead-based counterparts. Controllable tin vacancy formation and the ensuing hole doping provide interesting opportunities to investigate dynamic intraband transitions of charge carriers in these materials. Here, we present for the first time an experimental implementation of a novel Optical-Pump–IR-Push–THz-Probe spectroscopic technique and demonstrate its suitability to investigate the intraband relaxation dynamics of charge carriers brought into non-equilibrium by an infrared “push” pulse. We observe a push-induced decrease of terahertz conductivity for both chemically- and photodoped FA0.83Cs0.17SnI3 thin films and show that these effects derive from stimulated THz emission. We use this technique to reveal that newly photogenerated charge carriers relax within the bands of FA0.83Cs0.17SnI3 on a sub-picosecond timescale when a large, already fully thermalized (cold) population of charge-carriers is present. Such rapid dissipation of the initial charge-carrier energy suggests that the propensity of tin halide perovskites towards unintentional self-doping resulting from tin vacancy formation makes these materials less suited to implementation in hot-carrier solar cells than their lead-based counterparts.The atomic-scale microstructure of metal halide perovskite elucidated via low-dose electron microscopy
Microscopy and Microanalysis Oxford University Press (OUP) 27:S1 (2021) 966-968