Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
  • Support
Menu
Black Hole

Lensing of space time around a black hole. At Oxford we study black holes observationally and theoretically on all size and time scales - it is some of our core work.

Credit: ALAIN RIAZUELO, IAP/UPMC/CNRS. CLICK HERE TO VIEW MORE IMAGES.

Dr Shubham Srivastav

Postdoctoral Research Assistant

Research theme

  • Astronomy and astrophysics

Sub department

  • Astrophysics

Research groups

  • Hintze Centre for Astrophysical Surveys
shubham.srivastav@physics.ox.ac.uk
  • About
  • Publications

SN 2024bfu, SN 2025qe, and the early light curves of type Iax supernovae

Monthly Notices of the Royal Astronomical Society Oxford University Press (OUP) 543:4 (2025) 3731-3753

Authors:

MR Magee, TL Killestein, M Pursiainen, B Godson, D Jarvis, C Jiménez-Palau, JD Lyman, D Steeghs, B Warwick, JP Anderson, T Butterley, T-W Chen, VS Dhillon, L Galbany, S González-Gaitán, M Gromadzki, C Inserra, L Kelsey, A Kumar, G Leloudas, S Mattila, S Moran, TE Müller-Bravo, K Noysena, G Ramsay, S Srivastav, R Starling, RW Wilson, DR Young, K Ackley, RP Breton, J Casares Velázquez, MJ Dyer, DK Galloway, E Kankare, R Kotak, LK Nuttall, D O’Neill, P Pessi, D Pollacco, K Ulaczyk, O Yaron

Abstract:

ABSTRACT Type Iax supernovae (SNe Iax) are one of the most common subclasses of thermonuclear supernova and yet their sample size, particularly those observed shortly after explosion, remains relatively small. In this paper, we present photometric and spectroscopic observations of two SNe Iax discovered shortly after explosion, SN 2024bfu and SN 2025qe. Both SNe were observed by multiple all-sky surveys, enabling tight constraints on the moment of first light and the shape of the early light curve. Our observations of SN 2025qe begin <2 d after the estimated time of first light and represent some of the earliest observations of any SN Iax. Spectra show features consistent with carbon absorption throughout the evolution of SN 2025qe, potentially indicating the presence of unburned material throughout the ejecta. We gather a sample of SNe Iax observed by the Asteroid Terrestrial-impact Last Alert System (ATLAS), Gravitational-wave Optical Transient Observer (GOTO), and Zwicky Transient Facility (ZTF) shortly after explosion and measure their rise times and early light curve power-law rise indices. We compare our results to a sample of normal SNe Ia and find indications that SNe Iax show systematically shorter rise times, consistent with previous work. We also find some indication that SNe Iax show systematically lower rise indices than normal SNe Ia. The low rise indices observed among SNe Iax are qualitatively consistent with extended $^{56}$Ni distributions and more thoroughly-mixed ejecta compared to normal SNe Ia, similar to predictions from pure deflagration explosions.
More details from the publisher

A long-lasting eruption heralds SN 2023ldh, a clone of SN 2009ip

Astronomy & Astrophysics EDP Sciences 701 (2025) a32

Authors:

A Pastorello, A Reguitti, L Tartaglia, G Valerin, Y-Z Cai, P Charalampopoulos, F De Luise, Y Dong, N Elias-Rosa, J Farah, A Farina, S Fiscale, M Fraser, L Galbany, S Gomez, M González-Bañuelos, D Hiramatsu, DA Howell, T Kangas, TL Killestein, P Marziani, PA Mazzali, E Mazzotta Epifani, C McCully, P Ochner, E Padilla Gonzalez, AP Ravi, I Salmaso, S Schuldt, AG Schweinfurth, SJ Smartt, KW Smith, S Srivastav, MD Stritzinger, S Taubenberger, G Terreran, S Valenti, Z-Y Wang, F Guidolin, CP Gutiérrez, K Itagaki, S Kiyota, P Lundqvist, KC Chambers, TJL de Boer, C-C Lin, TB Lowe, EA Magnier, RJ Wainscoat

Abstract:

We discuss the results of the spectroscopic and photometric monitoring of the type IIn supernova (SN) 2023ldh. Survey archive data show that the SN progenitor experienced erratic variability in the years before exploding. Beginning May 2023, the source showed a general slow luminosity rise that lasted for over four months, with some superposed luminosity fluctuations. In analogy to SN 2009ip , we call this brightening ‘Event A’. During Event A, SN 2023ldh reached a maximum absolute magnitude of M r = −15.52 ± 0.24 mag. The light curves then decreased by about 1 mag in all filters for about two weeks reaching a relative minimum, which was followed by a steep brightening (Event B) to an absolute peak magnitude of M r = −18.53 ± 0.23 mag, replicating the evolution of SN 2009ip and similar to that of type IIn SNe. The three spectra of SN 2023ldh obtained during Event A show multi-component P Cygni profiles of H I and Fe II lines. During the rise to the Event B peak, the spectrum shows a blue continuum dominated by Balmer lines in emission with Lorentzian profiles, with a full width at half maximum velocity of about 650 km s −1 . Later, in the post-peak phase, the spectrum reddens, and broader wings appear in the H α line profile. Metal lines with P Cygni profiles and velocities of about 2000 km s −1 are clearly visible. Beginning around three months past maximum and until very late phases, the Ca II lines become among the most prominent features, while H α is dominated by an intermediate-width component with a boxy profile. Although SN 2023ldh mimics the evolution of other SN 2009ip -like transients, it is slightly more luminous and has a slower photometric evolution. The surprisingly homogeneous observational properties of SN 2009ip -like events may indicate similar explosion scenarios and similar progenitor parameters.
More details from the publisher
More details

Massive stars exploding in a He-rich circumstellar medium

Astronomy & Astrophysics EDP Sciences 700 (2025) a156

Authors:

Z-Y Wang, A Pastorello, Y-Z Cai, M Fraser, A Reguitti, W-L Lin, L Tartaglia, D Andrew Howell, S Benetti, E Cappellaro, Z-H Chen, N Elias-Rosa, J Farah, A Fiore, D Hiramatsu, E Kankare, Z-T Li, P Lundqvist, PA Mazzali, C McCully, J Mo, S Moran, M Newsome, E Padilla Gonzalez, C Pellegrino, Z-H Peng, SJ Smartt, S Srivastav, MD Stritzinger, G Terreran, L Tomasella, G Valerin, G-J Wang, X-F Wang, T de Boer, KC Chambers, H Gao, F-Z Guo, CP Gutiérrez, T Kangas, E Karamehmetoglu, G-C Li, C-C Lin, TB Lowe, X-R Ma, EA Magnier, P Minguez, S-P Pei, TM Reynolds, RJ Wainscoat, B Wang, S Williams, C-Y Wu, S-Y Yan, J-J Zhang, X-H Zhang, X-J Zhu

Abstract:

We present the photometric and spectroscopic analysis of five Type Ibn supernovae (SNe): SN 2020nxt, SN 2020taz, SN 2021bbv, SN 2023utc, and SN 2024aej. These events share key observational features and belong to a family of objects similar to the prototypical Type Ibn SN 2006jc. The SNe exhibit rise times of approximately 10 days and peak absolute magnitudes ranging from −16.5 to −19 mag. Notably, SN 2023utc is the faintest Type Ibn SN discovered to date, with an exceptionally low r -band absolute magnitude of −16.4 mag. The pseudo-bolometric light curves peak at (1 − 10)×10 42 erg s −1 , with total radiated energies on the order of (1 − 10)×10 48 erg. Spectroscopically, these SNe display a relatively slow spectral evolution. The early spectra are characterised by a hot blue continuum and prominent He  I emission lines. The early spectra also show blackbody temperatures exceeding 10 000 K, with a subsequent decline in temperature during later phases. Narrow He  I lines, which are indicative of unshocked circumstellar material (CSM), show velocities of approximately 1000 km s −1 . The spectra suggest that the progenitors of these SNe underwent significant mass loss prior to the explosion, resulting in a He-rich CSM. Our light curve modelling yielded estimates for the ejecta mass ( M ej ) in the range 1 − 3 M ⊙ with kinetic energies ( E Kin ) of (0.1 − 1)×10 50 erg. The inferred CSM mass ranges from 0.2 to 1 M ⊙ . These findings are consistent with expectations for core collapse events arising from relatively massive envelope-stripped progenitors.
More details from the publisher
More details

Results from the Pan-STARRS search for kilonovae: contamination by massive stellar outbursts

Monthly Notices of the Royal Astronomical Society Oxford University Press 542:2 (2025) 541-559

Authors:

MD Fulton, SJ Smartt, ME Huber, KW Smith, KC Chambers, M Nicholl, S Srivastav, DR Young, EA Magnier, C-C Lin, P Minguez, T de Boer, T Lowe, R Wainscoat

Abstract:

We present results from the Pan-STARRS optical search for kilonovae without the aid of gravitational wave and gamma-ray burst triggers. The search was conducted from 2019 October 26 to 2022 December 15. During this time, we reported 29 740 transients observed by Pan-STARRS to the IAU Transient Name Server. Of these, 175 were Pan-STARRS credited discoveries that had a host galaxy within 200 Mpc and had discovery absolute magnitudes . A subset of 11 transients was plausibly identified as kilonova candidates by our kilonova prediction algorithm. Through a combination of historical forced photometry, extensive follow-up, and aggregating observations from multiple sky surveys, we eliminated all as kilonova candidates. Rapidly evolving outbursts from massive stars (likely to be Luminous Blue Variable eruptions) accounted for 55 per cent of the subset’s contaminating sources. We estimate the rate of such eruptions using the Asteroid Terrestrial-impact Last Alert System 100 Mpc volume-limited survey data. As these outbursts appear to be significant contaminants in kilonova searches, we estimate contaminating numbers when searching gravitational wave skymaps produced by the LIGO-Virgo-Kagra science collaboration during the Rubin era. The Legacy Survey of Space and time, reaching limiting magnitudes of , could detect 2–6 massive stellar outbursts per 500 deg within a 4-d observing window, within the skymaps and volumes typical for binary neutron star mergers projected for Ligo-Virgo-Kagra Observing run 5. We conclude that while they may be a contaminant, they can be photometrically identified.
More details from the publisher
Details from ORA
More details

EP 250108a/SN 2025kg: Observations of the Most Nearby Broad-line Type Ic Supernova Following an Einstein Probe Fast X-Ray Transient

The Astrophysical Journal Letters American Astronomical Society 988:1 (2025) L13

Authors:

Jillian C Rastinejad, Andrew J Levan, Peter G Jonker, Charles D Kilpatrick, Christopher L Fryer, Nikhil Sarin, Benjamin P Gompertz, Chang Liu, Rob AJ Eyles-Ferris, Wen-fai Fong, Eric Burns, James H Gillanders, Ilya Mandel, Daniele Bjørn Malesani, Paul T O’Brien, Nial R Tanvir, Kendall Ackley, Amar Aryan, Franz E Bauer, Steven Bloemen, Thomas de Boer, Clécio R Bom, Jennifer A Chacón, Ken Chambers

Abstract:

With a small sample of fast X-ray transients (FXTs) with multiwavelength counterparts discovered to date, their progenitors and connections to γ-ray bursts (GRBs) and supernovae (SNe) remain ambiguous. Here, we present photometric and spectroscopic observations of SN 2025kg, the SN counterpart to the FXT EP 250108a. At z = 0.17641, this is the closest known SN discovered following an Einstein Probe (EP) FXT. We show that SN 2025kg’s optical spectra reveal the hallmark features of a broad-lined Type Ic SN. Its light-curve evolution and expansion velocities are comparable to those of GRB-SNe, including SN 1998bw, and two past FXT-SNe. We present JWST/NIRSpec spectroscopy taken around SN 2025kg’s maximum light, and find weak absorption due to He I 1.0830 μm and 2.0581 μm and a broad, unidentified emission feature at ∼4–4.5 μm. Further, we observe broadened Hα in optical data at 42.5 days that is not detected at other epochs, indicating interaction with H-rich material. From its light curve, we derive a 56Ni mass of 0.2–0.6 M⊙. Together with our companion Letter, our broadband data are consistent with a trapped or low-energy (≲1051 erg) jet-driven explosion from a collapsar with a zero-age main-sequence mass of 15–30 M⊙. Finally, we show that the sample of EP FXT-SNe supports past estimates that low-luminosity jets seen through FXTs are more common than successful (GRB) jets, and that similar FXT-like signatures are likely present in at least a few percent of the brightest Type Ic-BL SNe.
More details from the publisher
Details from ORA
More details

Pagination

  • First page First
  • Previous page Prev
  • Page 1
  • Current page 2
  • Page 3
  • Page 4
  • Page 5
  • Page 6
  • Page 7
  • Page 8
  • Page 9
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Giving to Physics
  • Current students
  • Staff intranet