Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
  • Support
Menu
Black Hole

Lensing of space time around a black hole. At Oxford we study black holes observationally and theoretically on all size and time scales - it is some of our core work.

Credit: ALAIN RIAZUELO, IAP/UPMC/CNRS. CLICK HERE TO VIEW MORE IMAGES.

Dr Shubham Srivastav

Postdoctoral Research Assistant

Research theme

  • Astronomy and astrophysics

Sub department

  • Astrophysics

Research groups

  • Hintze Centre for Astrophysical Surveys
shubham.srivastav@physics.ox.ac.uk
  • About
  • Publications

The diversity of strongly interacting Type IIn supernovae

Astronomy & Astrophysics EDP Sciences 695 (2025) A29-A29

Authors:

I Salmaso, E Cappellaro, L Tartaglia, JP Anderson, S Benetti, M Bronikowski, Y-Z Cai, P Charalampopoulos, T-W Chen, E Concepcion, N Elias-Rosa, L Galbany, M Gromadzki, CP Gutiérrez, E Kankare, P Lundqvist, K Matilainen, PA Mazzali, S Moran, TE Müller-Bravo, M Nicholl, A Pastorello, PJ Pessi, T Pessi, T Petrushevska, G Pignata, A Reguitti, J Sollerman, S Srivastav, M Stritzinger, L Tomasella, G Valerin

Abstract:

Context. At late stages, massive stars experience strong mass-loss rates, losing their external layers and thus producing a dense H-rich circumstellar medium (CSM). After the explosion of a massive star, the collision and continued interaction of the supernova (SN) ejecta with the CSM power the SN light curve through the conversion of kinetic energy into radiation. When the interaction is strong, the light curve shows a broad peak and high luminosity that lasts for several months. For these SNe, the spectral evolution is also slower compared to non-interacting SNe. Notably, energetic shocks between the ejecta and the CSM create the ideal conditions for particle acceleration and the production of high-energy (HE) neutrinos above 1 TeV. Aims. We study four strongly interacting Type IIn SNe, 2021acya, 2021adxl, 2022qml, and 2022wed, in order to highlight their peculiar characteristics, derive the kinetic energy of their explosion and the characteristics of the CSM, infer clues on the possible progenitors and their environment, and relate them to the production of HE neutrinos. Methods. We analysed spectro-photometric data of a sample of interacting SNe to determine their common characteristics and derive the physical properties (radii and masses) of the CSM and the ejecta kinetic energies and compare them to HE neutrino production models. Results. The SNe analysed in this sample exploded in dwarf star-forming galaxies, and they are consistent with energetic explosions and strong interaction with the surrounding CSM. For SNe 2021acya and 2022wed, we find high CSM masses and mass-loss rates, linking them to very massive progenitors. For SN 2021adxl, the spectral analysis and less extreme CSM mass suggest a stripped-envelope massive star as a possible progenitor. SN 2022qml is marginally consistent with being a Type Ia thermonuclear explosion embedded in a dense CSM. The mass-loss rates for all the SNe are consistent with the expulsion of several solar masses of material during eruptive episodes in the last few decades before the explosion. Finally, we find that the SNe in our sample are marginally consistent with HE neutrino production.
More details from the publisher
More details

SN 2023zaw: The Low-energy Explosion of an Ultrastripped Star

The Astrophysical Journal Letters American Astronomical Society 980:2 (2025) L44

Authors:

T Moore, JH Gillanders, M Nicholl, ME Huber, SJ Smartt, S Srivastav, HF Stevance, T-W Chen, KC Chambers, JP Anderson, MD Fulton, SR Oates, C Angus, G Pignata, N Erasmus, H Gao, J Herman, C-C Lin, T Lowe, EA Magnier, P Minguez, C-C Ngeow, X Sheng, SA Sim

Abstract:

Most stripped-envelope supernova progenitors are thought to be formed through binary interaction, losing hydrogen and/or helium from their outer layers. Ultrastripped supernovae are an emerging class of transient that are expected to be produced through envelope stripping by a neutron star companion. However, relatively few examples are known, and the outcomes of such systems can be diverse and are poorly understood at present. Here we present spectroscopic observations and high-cadence, multiband photometry of SN 2023zaw, a rapidly evolving supernova with a low ejecta mass. SN 2023zaw was discovered in a nearby spiral galaxy at D = 39.7 Mpc. It has significant Milky Way extinction, E(B − V)MW = 0.21, and significant (but uncertain) host extinction. Bayesian evidence comparison reveals that nickel is not the only power source and that an additional energy source is required to explain our observations. Our models suggest that an ejecta mass of Mej ∼ 0.07 M⊙ and a synthesised nickel mass of MNi ∼ 0.007 M⊙ are required to explain the observations. We find that additional heating from a central engine, or interaction with circumstellar material, can power the early light curve.
More details from the publisher
Details from ORA
More details

Eruptive mass loss less than a year before the explosion of superluminous supernovae

Astronomy & Astrophysics EDP Sciences 694 (2025) a292

Authors:

A Gkini, C Fransson, R Lunnan, S Schulze, F Poidevin, N Sarin, R Könyves-Tóth, J Sollerman, CMB Omand, SJ Brennan, KR Hinds, JP Anderson, M Bronikowski, T-W Chen, R Dekany, M Fraser, C Fremling, L Galbany, A Gal-Yam, A Gangopadhyay, S Geier, EP Gonzalez, M Gromadzki, SL Groom, CP Gutiérrez, D Hiramatsu, DA Howell, Y Hu, C Inserra, M Kopsacheili, L Lacroix, FJ Masci, K Matilainen, C McCully, T Moore, TE Müller-Bravo, M Nicholl, C Pellegrino, I Pérez-Fournon, DA Perley, PJ Pessi, T Petrushevska, G Pignata, F Ragosta, A Sahu, A Singh, S Srivastav, JL Wise, L Yan, DR Young
More details from the publisher
More details

ZTF SN Ia DR2: Searching for late-time interaction signatures in Type Ia supernovae from the Zwicky Transient Facility

Astronomy & Astrophysics EDP Sciences 694 (2025) A11-A11

Authors:

Jacco H Terwel, Kate Maguire, Georgios Dimitriadis, Mat Smith, Simeon Reusch, Leander Lacroix, Lluís Galbany, Umut Burgaz, Luke Harvey, Steve Schulze, Mickael Rigault, Steven L Groom, David Hale, Mansi M Kasliwal, Young-Lo Kim, Josiah Purdum, Ben Rusholme, Jesper Sollerman, Joseph P Anderson, Ting-Wan Chen, Christopher Frohmaier, Mariusz Gromadzki, Tomás E Müller-Bravo, Matt Nicholl, Shubham Srivastav, Maxime Deckers

Abstract:

The nature of the progenitor systems and explosion mechanisms that give rise to Type Ia supernovae (SNe Ia) are still debated. The interaction signature of circumstellar material (CSM) being swept up by the expanding ejecta can constrain the type of system from which it was ejected. However, most previous studies have focussed on finding CSM ejected shortly before the SN Ia explosion, which still resides close to the explosion site resulting in short delay times until the interaction starts. We used a sample of 3628 SNe Ia from the Zwicky Transient Facility (ZTF) that were discovered between 2018 and 2020 and searched for interaction signatures greater than 100 days after peak brightness. By binning the late-time light curve data to push the detection limit as deep as possible, we identified potential late-time rebrightening in three SNe Ia (SN 2018grt, SN 2019dlf, and SN 2020tfc). The late-time optical detections occur between 550 and 1450 d after peak brightness, have mean absolute r-band magnitudes of −16.4 to −16.8 mag, and last up to a few hundred days, which is significantly brighter than the late-time CSM interaction discovered in the prototype, SN 2015cp. The late-time detections in the three objects all occur within 0.8 kpc of the host nucleus and are not easily explained by nuclear activity, another transient at a similar sky position, or data quality issues. This is suggestive of environment or specific progenitor characteristics playing a role in the production of potential CSM signatures in these SNe Ia. Through simulating the ZTF survey, we estimate that < 0.5% of normal SNe Ia display a late-time (> 100 d post peak) strong Hα-dominated CSM interaction. This is equivalent to an absolute rate of 8−4+20 to 54−26+91 Gpc−3 yr−1 assuming a constant SN Ia rate of 2.4 × 10−5 Mpc−3 yr−1 for z ≤ 0.1. Weaker interaction signatures of Hα emission, more similar to the strength seen in SN 2015cp, could be more common but are difficult to constrain with our survey depth.
More details from the publisher
More details

Identification of the Optical Counterpart of the Fast X-Ray Transient EP240414a

The Astrophysical Journal Letters American Astronomical Society 978:2 (2025) L21

Authors:

S Srivastav, T-W Chen, JH Gillanders, L Rhodes, SJ Smartt, ME Huber, A Aryan, S Yang, A Beri, AJ Cooper, M Nicholl, KW Smith, HF Stevance, F Carotenuto, KC Chambers, A Aamer, CR Angus, MD Fulton, T Moore, IA Smith, DR Young, T de Boer, H Gao, C-C Lin

Abstract:

Fast X-ray transients (FXTs) are extragalactic bursts of X-rays first identified in archival X-ray data and are now routinely discovered in real time by the Einstein Probe, which is continuously surveying the night sky in the soft (0.5–4 keV) X-ray regime. In this Letter, we report the discovery of the second optical counterpart (AT 2024gsa) to an FXT (EP 240414a). EP 240414a is located at a projected radial separation of 27 kpc from its likely host galaxy at z = 0.4018 ± 0.0010. The optical light curve of AT 2024gsa displays three distinct components. The initial decay from our first observation is followed by a rebrightening episode, displaying a rapid rise in luminosity to an absolute magnitude Mr ∼ −21 after two rest-frame days. While the early optical luminosity and decline rate are similar to those of luminous fast blue optical transients, the color temperature of AT 2024gsa is distinctly red and we show that the peak flux is inconsistent with a thermal origin. The third component peaks at Mi ∼ −19 at ≳16 rest-frame days post-FXT, and is compatible with an emerging supernova. We fit the riz-band data with a series of power laws and find that the decaying components are in agreement with gamma-ray burst afterglow models, and that the rebrightening may originate from refreshed shocks. By considering EP 240414a in context with all previously reported known-redshift FXT events, we propose that Einstein Probe FXT discoveries may predominantly result from (high-redshift) gamma-ray bursts, and thus appear to be distinct from the previously discovered lower-redshift, lower-luminosity population of FXTs.
More details from the publisher
Details from ORA
More details

Pagination

  • First page First
  • Previous page Prev
  • Page 1
  • Page 2
  • Page 3
  • Current page 4
  • Page 5
  • Page 6
  • Page 7
  • Page 8
  • Page 9
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Giving to Physics
  • Current students
  • Staff intranet