Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
artwork giving an impression of bitstrings, light and quantum
Credit: I believe this widely-used image is public domain; it was obtained by download in 2015; source unknown

Prof Andrew Steane

Professor of Physics

Research theme

  • Quantum information and computation

Sub department

  • Atomic and Laser Physics

Research groups

  • Ion trap quantum computing
Andrew.Steane@physics.ox.ac.uk
Telephone: 01865 (2)72346,01865 (2)72385
Clarendon Laboratory, room 316.2
  • About
  • Teaching
  • Publications

Quantum computing and error correction

NATO SC S SS III C S 182 (2001) 284-298

Abstract:

The main ideas of quantum error correction are introduced. These are encoding, extraction of syndromes, error operators, and code construction. It is shown that general noise and relaxation of a set of 2-state quantum systems can always be understood as a combination of Pauli operators acting on the system. Each quantum error correcting code allows a subset of these errors to be corrected. In many situations the noise is such that the remaining uncorrectable errors are unlikely to arise, and hence quantum error correction has a high probability of success. In order to achieve the best noise tolerance in the presence of noise and imprecision throughout the computer, a hierarchical construction of a quantum computer is proposed.
More details

Quantum computing with trapped ions, atoms and light

AIP CONF PROC 551 (2001) 158-172

Abstract:

We consider experimental issues relevant to quantum computing, and discuss the best way to achieve the essential requirements of reliable quantum memory and gate operations. Nuclear spins in trapped ions or atoms are a very promising candidate for the qubits. We estimate the parameters required to couple atoms using light via cavity QED in order to achieve quantum gates. We briefly comment on recent improvements to the Cirac-Zoller method for coupling trapped ions via their vibrational degree of freedom. Error processes result in a trade-off between quantum gate speed and failure probability. A useful quantum computer does appear to be feasible using a combination of ion trap and optical methods. The best understood method to stabilise a large computer relies on quantum error correction. The essential ideas of this are discussed, and recent estimates of the noise requirements in a quantum computing device are given.
More details from the publisher
More details

Realising quantum computing: Physical systems and robustness

(2001) 199-206

Abstract:

The physical realisation of a large quantum computer, i.e. one which could perform calculations beyond the capabilities of classical computers, is discussed, It is necessary to consider both the physical mechanisms of the hardware and the noise tolerance of quantum error correction (QEC) methods, Estimates for noise tolerance which involve fewer simplifying assumptions than were previously employed are given, and the scaling of logic gate rate with logic gate precision is discussed. It is found that QEC is fast compared to methods such as adiabatic passage.
More details from the publisher
More details

Quantum Computation with Trapped Ions, Atoms and Light

Chapter in Scalable Quantum Computers, Wiley (2000) 69-88

Authors:

AM Steane, DM Lucas
More details from the publisher

Measurement of the lifetime of the 3d 2D5/2 state in 40Ca+

Physical Review A - Atomic, Molecular, and Optical Physics 62:3 (2000) 1-10

Authors:

PA Barton, CJS Donald, DM Lucas, DA Stevens, AM Steane, DN Stacey

Abstract:

We report a measurement of the lifetime of the 3d 2D5/2 metastable level in 40Ca+, using quantum jumps of a single cold calcium ion in a linear Paul trap. The 4s 2S1/2-3d 2D5/2 transition is significant for single-ion optical frequency standards, astrophysical references, and tests of atomic structure calculations. We obtain τ = 1.168±0.007 s from observation of nearly 64 000 quantum jumps during ∼32 h. Our result is more precise and significantly larger than previous measurements. Experiments carried out to quantify systematic effects included a study of a previously unremarked source of systematic error, namely, excitation by the broad background of radiation emitted by a semiconductor diode laser. Combining our result with atomic structure calculations yields 1.20±0.01 s for the lifetime of 3d 2D3/2. We also use quantum jump observations to demonstrate photon antibunching, and to estimate background pressure and heating rates in the ion trap. ©2000 The American Physical Society.

Pagination

  • First page First
  • Previous page Prev
  • …
  • Page 19
  • Page 20
  • Page 21
  • Page 22
  • Current page 23
  • Page 24
  • Page 25
  • Page 26
  • Page 27
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet