Skip to main content
Home
Department Of Physics text logo
  • Research
    • Our research
    • Our research groups
    • Our research in action
    • Research funding support
    • Summer internships for undergraduates
  • Study
    • Undergraduates
    • Postgraduates
  • Engage
    • For alumni
    • For business
    • For schools
    • For the public
Menu
artwork giving an impression of bitstrings, light and quantum
Credit: I believe this widely-used image is public domain; it was obtained by download in 2015; source unknown

Prof Andrew Steane

Professor of Physics

Research theme

  • Quantum information and computation

Sub department

  • Atomic and Laser Physics

Research groups

  • Ion trap quantum computing
Andrew.Steane@physics.ox.ac.uk
Telephone: 01865 (2)72346,01865 (2)72385
Clarendon Laboratory, room 316.2
  • About
  • Teaching
  • Publications

Thermodynamics A Complete Undergraduate Course

Oxford University Press, 2016

Abstract:

This book aims to convey the style and power of thermodynamic reasoning, along with applications such as Joule-Kelvin expansion, the gas turbine, magnetic cooling, solids at high pressure, chemical equilibrium, radiative heat exchange and ...

Detecting continuous spontaneous localisation with charged bodies in a Paul trap

(2016)

Authors:

Ying Li, Andrew M Steane, Daniel Bedingham, G Andrew D Briggs
More details from the publisher

On determining absolute entropy without quantum theory or the third law of thermodynamics

New Journal of Physics IOP Publishing 18 (2016) 043022-043022

Abstract:

We employ classical thermodynamics to gain information about absolute entropy, without recourse to statistical methods, quantum mechanics or the third law of thermodynamics. The Gibbs-Duhem equation yields various simple methods to determine the absolute entropy of a fluid. We also study the entropy of an ideal gas and the ionization of a plasma in thermal equilibrium. A single measurement of the degree of ionization can be used to determine an unknown constant in the entropy equation, and thus determine the absolute entropy of a gas. It follows from all these examples that the value of entropy at absolute zero temperature does not need to be assigned by postulate, but can be deduced empirically.
More details from the publisher
Details from ORA
More details
More details

Dark-resonance Doppler cooling and high fluorescence in trapped Ca-43 ions at intermediate magnetic field

New Journal of Physics IOP Publishing 18:2 (2016) 023043

Authors:

DTC Allcock, TP Harty, MA Sepiol, HA Janacek, CJ Ballance, AM Steane, DM Lucas, DN Stacey
More details from the publisher
Details from ArXiV

High-fidelity spatial and polarization addressing of Ca-43 qubits using near-field microwave control

(2016)

Authors:

DPL Aude Craik, NM Linke, MA Sepiol, TP Harty, JF Goodwin, CJ Ballance, DN Stacey, AM Steane, DM Lucas, DTC Allcock
More details from the publisher

Pagination

  • First page First
  • Previous page Prev
  • Page 1
  • Page 2
  • Page 3
  • Page 4
  • Current page 5
  • Page 6
  • Page 7
  • Page 8
  • Page 9
  • …
  • Next page Next
  • Last page Last

Footer Menu

  • Contact us
  • Giving to the Dept of Physics
  • Work with us
  • Media

User account menu

  • Log in

Follow us

FIND US

Clarendon Laboratory,

Parks Road,

Oxford,

OX1 3PU

CONTACT US

Tel: +44(0)1865272200

University of Oxfrod logo Department Of Physics text logo
IOP Juno Champion logo Athena Swan Silver Award logo

© University of Oxford - Department of Physics

Cookies | Privacy policy | Accessibility statement

Built by: Versantus

  • Home
  • Research
  • Study
  • Engage
  • Our people
  • News & Comment
  • Events
  • Our facilities & services
  • About us
  • Current students
  • Staff intranet