The significant role of biomass burning aerosols in clouds and radiation in the South-eastern Atlantic Ocean
Atmospheric Chemistry and Physics Copernicus Publications (2020)
Abstract:
The South-eastern Atlantic Ocean (SEA) is semi-permanently covered by one of the most extensive stratocumulus cloud decks on the planet and experiences about one-third of the global biomass burning emissions from the southern Africa savannah region during the fire season. To get a better understanding of the impact of these biomass burning aerosols on clouds and radiation balance over the SEA, the latest generation of the UK Earth System Model (UKESM1) is employed. Measurements from the CLARIFY and ORACLES flight campaigns are used to evaluate the model, demonstrating that the model has good skill in reproducing the biomass burning plume. To investigate the underlying mechanisms in detail, the effects of biomass burning aerosols on the clouds are decomposed into radiative effects (via absorption and scattering) and microphysical effects (via perturbation of cloud condensation nuclei (CCN) and cloud microphysical processes). The July–August means are used to characterise aerosols, clouds and the radiation balance during the fire season. Results show around 68 % of CCN at 0.2 % supersaturation in the SEA domain can be attributed to biomass burning. The absorption effect of biomass burning aerosols is the most significant in affecting clouds and radiation. Near the continent it increases the maximum supersaturation diagnosed by the activation scheme, while further from the continent it reduces the altitude of the maximum supersaturation. As a result, the cloud droplet number concentration shows a similar pattern. The microphysical effect of biomass burning aerosols decreases the maximum supersaturation and increases the cloud droplets concentration over the ocean; however, this change is relatively small. The liquid water path is also significantly increased over the SEA (mainly caused by the absorption effect of biomass burning aerosols) when biomass burning aerosols are above the stratocumulus cloud deck. The microphysical pathways lead to a slight increase in the liquid water path over the ocean. These changes in cloud properties indicate the significant role of biomass burning aerosols on clouds in this region. Among the effects of biomass burning aerosols on radiation balance, the semi-direct radiative effects (rapid adjustments induced by biomass burning aerosols radiative effects) have a dominant cooling impact over the SEA, which offset the warming direct radiative effect (radiative forcing from biomass burning aerosol–radiation interactions). However, the magnitude and the sign of the semi-direct effects are dependent on the relative location of biomass burning aerosols and clouds. The net biomass burning aerosols radiative effect shows a negative cooling effect in the SEA, indicating the significant role of biomass burning aerosols in affecting the regional radiation balance and climate.Ensemble daily simulations for elucidating cloud–aerosol interactions under a large spread of realistic environmental conditions
Atmospheric Chemistry and Physics Copernicus GmbH 20:11 (2020) 6291-6303
Abstract:
Reducing the aerosol forcing uncertainty using observational constraints on warm rain processes
Science Advances (2020)
Constraining uncertainty in aerosol direct forcing
Geophysical Research Letters American Geophysical Union 47:9 (2020) e2020GL087141
Abstract:
The uncertainty in present-day anthropogenic forcing is dominated by uncertainty in the strength of the contribution from aerosol. Much of the uncertainty in the direct aerosol forcing can be attributed to uncertainty in the anthropogenic fraction of aerosol in the present-day atmosphere, due to a lack of historical observations. Here we present a robust relationship between total present-day aerosol optical depth and the anthropogenic contribution across three multi-model ensembles and a large single-model perturbed parameter ensemble. Using observations of aerosol optical depth, we determine a reduced likely range of the anthropogenic component and hence a reduced uncertainty in the direct forcing of aerosol.Atmospheric energy budget response to idealized aerosol perturbation in tropical cloud systems
Atmospheric Chemistry and Physics Copernicus GmbH 20:7 (2020) 4523-4544