A topological perspective on weather regimes
Climate Dynamics Springer 60:5-6 (2022) 1415-1445
Abstract:
It has long been suggested that the mid-latitude atmospheric circulation possesses what has come to be known as ‘weather regimes’, loosely categorised as regions of phase space with above-average density and/or extended persistence. Their existence and behaviour has been extensively studied in meteorology and climate science, due to their potential for drastically simplifying the complex and chaotic mid-latitude dynamics. Several well-known, simple non-linear dynamical systems have been used as toy-models of the atmosphere in order to understand and exemplify such regime behaviour. Nevertheless, no agreed-upon and clear-cut definition of a ‘regime’ exists in the literature, and unambiguously detecting their existence in the atmospheric circulation is stymied by the high dimensionality of the system. We argue here for an approach which equates the existence of regimes in a dynamical system with the existence of non-trivial topological structure of the system’s attractor. We show using persistent homology, an algorithmic tool in topological data analysis, that this approach is computationally tractable, practically informative, and identifies the relevant regime structure across a range of examples.Quantifying climate model representation of the wintertime Euro-Atlantic circulation using geopotential-jet regimes
Weather and Climate Dynamics Copernicus Publications 3:2 (2022) 505-533
Abstract:
<jats:p>Abstract. Even the most advanced climate models struggle to reproduce the observed wintertime circulation of the atmosphere over the North Atlantic and western Europe. During winter, the large-scale motions of this particularly challenging region are dominated by eddy-driven and highly non-linear flows, whose low-frequency variability is often studied from the perspective of regimes – a small number of qualitatively distinct atmospheric states. Poor representation of regimes associated with persistent atmospheric blocking events, or variations in jet latitude, degrades the ability of models to correctly simulate extreme events. In this paper we leverage a recently developed hybrid approach – which combines both jet and geopotential height data – to assess the representation of regimes in 8400 years of historical climate simulations drawn from the Coupled Model Intercomparison Project (CMIP) experiments, CMIP5, CMIP6, and HighResMIP. We show that these geopotential-jet regimes are particularly suited to the analysis of climate data, with considerable reductions in sampling variability compared to classical regime approaches. We find that CMIP6 has a considerably improved spatial regime structure, and a more trimodal eddy-driven jet, relative to CMIP5, but it still struggles with under-persistent regimes and too little European blocking when compared to reanalysis. Reduced regime persistence can be understood, at least in part, as a result of jets that are too fast and eddy feedbacks on the jet stream that are too weak – structural errors that do not noticeably improve in higher-resolution models. </jats:p>Impact of stochastic physics and model resolution on the simulation of tropical cyclones in climate GCMs
Journal of Climate American Meteorological Society 34:11 (2021) 4315-4341
Abstract:
The role of model resolution in simulating geophysical vortices with the characteristics of realistic Tropical Cyclones (TCs) is well established. The push for increasing resolution continues, with General Circulation Models (GCMs) starting to use sub-10km grid spacing. In the same context it has been suggested that the use of Stochastic Physics (SP) may act as a surrogate for high resolution, providing some of the benefits at a fraction of the cost. Either technique can reduce model uncertainty, and enhance reliability, by providing a more dynamic environment for initial synoptic disturbances to be spawned and to grow into TCs. We present results from a systematic comparison of the role of model resolution and SP in the simulation of TCs, using EC-Earth simulations from project Climate-SPHINX, in large ensemble mode, spanning five different resolutions. All tropical cyclonic systems, including TCs, were tracked explicitly. As in previous studies, the number of simulated TCs increases with the use of higher resolution, but SP further enhances TC frequencies by ≈ 30%, in a strikingly similar way. The use of SP is beneficial for removing systematic climate biases, albeit not consistently so for interannual variability; conversely, the use of SP improves the simulation of the seasonal cycle of TC frequency. An investigation of the mechanisms behind this response indicates that SP generates both higher TC (and TC seed) genesis rates, and more suitable environmental conditions, enabling a more efficient transition of TC seeds into TCs. These results were confirmed by the use of equivalent simulations with the HadGEM3-GC31 GCM.Jet speed variability obscures Euro‐Atlantic regime structure
Geophysical Research Letters American Geophysical Union 47:15 (2020) e2020GL087907
Abstract:
Euro‐Atlantic regimes are typically identified using either the latitude of the North Atlantic jet or clustering algorithms in the phase space of 500‐hPa geopotential (Z500). However, while robust trimodality is visibly apparent in jet latitude indices, Z500 clusters require highly sensitive significance tests to distinguish them from autocorrelated noise. This leads to considerable decadal variability in regime patterns, confounding many potential applications. A clear‐cut choice of the optimal number of regimes is also hard to justify. We argue that the jet speed, a near‐Gaussian distribution projecting strongly onto the Z500 field, is the source of these difficulties. Once its influence is removed, the phase space becomes visibly non‐Gaussian, and clustering algorithms easily recover three regimes, closely corresponding to the jet latitude modes. Further analysis supports the existence of two additional blocking regimes, corresponding to a tilted and split jet. All five regimes are approximately stationary across the twentieth century.Euro-Atlantic weather Regimes in the PRIMAVERA coupled climate simulations: impact of resolution and mean state biases on model performance
Climate Dynamics Springer Nature 54:11-12 (2020) 5031-5048